

BugNet

Continuously Recording Program Execution for
Deterministic Replay Debugging

Satish Narayanasamy
Gilles Pokam

Brad Calder

Motivation
Current Scenario

Increasing Software Complexity
Difficult to guarantee correctness
Released software contain bugs

Problem
Bugs manifest at customer site
Difficult to reproduce bugs at developer site

Solution
Continuously record information about program execution, even during
production runs

Challenge
Recording should be transparent to customer –> HW can help!

Conventional Debugging

Examine core dump
Developer can examine final system state just before the crash
Very challenging to determine the root cause

Customer site (or even during testing)

Debugging at developer’s site

Core dump

Core dump

Program ExecutionBug source

Crash

Deterministic Replay Debugging

Developer Site

Crash
Replay

Replay Window

Program Execution

Bug occurs

Crash

Customer Site

Continuous
Recording

What is Deterministic Replay?

Executing same
sequence of instructions
with same input
operands
like in original execution

Deterministic Replay Debugging

Developer Site

Crash
Replay

Replay Window

Program Execution

Bug occurs

Crash

Customer Site

Continuous
Recording

Deterministic Replay
Debugging

• Debugger can examine variable
values

•Helps figuring out root cause of bug

•Reproduce even non-deterministic
Bugs

BugNet

Goal
Architecture support to enable Deterministic Replay Debugging

Focus
Debugging user code

Application and shared libraries
No logging during execution of system code (interrupt service
routines, system calls)

Approach
Log initial architectural state (registers, PC, etc) and then load values

Sufficient to replay user code, even across interrupts etc..

Overview

Program ExecutionCheckpoint
Checkpoint

Interval
~10 million instr

Log Header
• Program Counter
• Arch Register Values
• Process ID, Thread ID
• Checkpoint ID
• ..

Load Values

Only output of loads need to be logged

Input and output values of other instructions
can be regenerated during replay

First Load Log

Log load value only if
the load is the first
memory access to a
location

HW Support:
“FLL bits” for every
word in L1 and L2
caches

Reset at the
beginning of a
checkpoint interval
Set on access

Program
 Execution

First Load
Log (FLL)

Load A

Load A

Load B

Load A

Logged Not Logged

Load B

First Load Log

Store values never
need to be logged

Regenerated
during replay

Load A

Store B

Program
 Execution

First Load
Log (FLL)

PROBLEMS

Memory location can be
modified by stores in

• Interrupts, system calls

• Other threads in
multithreaded programs

• DMA transfers

Interrupts

Interrupt,
System Call,
Context Switch

Prematurely
Terminate checkpoint
(FLL bits are reset)

New checkpoint started
After servicing interrupt
(Start logging First loads)

Interrupts, system calls, I/O, DMA NOT tracked

BUT any values consumed later by the application will be logged, ON
DEMAND, in the new checkpoint

Support for Multi-threaded Programs

Assumptions for Multithreaded
Programs

Shared Memory Multi-threaded processors

Sequential Consistency
Memory operations form a total order

Directory based Cache Coherence protocol

Shared Memory Communication

Thread 1

Processor 1

A First Load Log (FLL) for
each thread is collected
locally

Problem :
Shared memory
communication between
threads

Affects First Load
optimization

Thread 2

Processor 2

Shared Memory Communication
Thread 1 Thread 2

Store A

Time

Load A

Load A

Load A
Invalidate Message
Resets FLL (First-Load Log) bits
for the word A in Thread 1

Logged Not Logged

DMA are handled similarly as they
use same coherence protocol

Independently Replaying Threads

Thread 1 A thread can be replayed
using its local FLL,
independent of other
threads

FLL checkpoints in
different threads need not
begin at the same time

Prematurely terminating
checkpoints for interrupts
becomes easier

Thread 2

Processor 1 Processor 2

Logging Memory Order

Infer and debug data races
Log order of memory operations executed across all the threads

Adapt Flight Data Recorder (FDR)
Xu, Bodik, Hill ISCA’03

Piggyback coherence replies with execution
states (Thread-ID, Checkpoint-ID, Inst Count) of sender
thread

Memory Race Log
Thread X Thread Y

Resets
first-load
bit for A

 ICx Store A
Invalidate

Invalidate Ack (Y, CP_ID1, ICy)

For Thread X
Log (ICx, Y, CP_ID1, ICy)

Will be used to determine
order of Store A wrt
memory operations in other threads

CP_ID 1

CP_ID 2

CP_ID 3

CP_ID 1

CP_ID 2

Executing STORE

(ICx)

Memory Race Log
Thread X Thread Y

 ICy Load A
Write update request

(X, CPId3, ICx)

For Thread Y
Log (ICy, X, CPid3, ICx)

cid 3

cid 4

cid 5

cid 3

cid 4

Write update reply

Executing LOAD

(ICy)

Main
Memory

Architecture Support Summary

Memory
Race Log

 Buffer

Checkpoint Log
Buffer

Dictionary L2 L1

Control

Cache coherence
ControllerPC Registers

Goal:
Deterministically
Replay Crash

Checkpoint
Mechanism

First Load Opt
Online Dictionary
Based
Compression

Memory Backed

Support for
Multithreading

Pipeline

16 KB FIFO

32 KB FIFO

Memory Back Support

Handling bursts
CB -16 KB; MRB – 32 KB
During bursts, CB & MRB buffers can get full

Processor stalled OR

Flush the buffer and start a new checkpoint

CB and MRB are memory backed
Contents continuously written back to main memory at two separate
locations
Amount of main memory space allocated determines replay window
length

Checkpoint Management

Oldest checkpoint discarded when allocated main memory space is
full

Checkpoint Interval length chosen based on available main
memory space

Tradeoff

Smaller the checkpoint interval lesser the information loss when a
checkpoint is discarded

Larger the checkpoint interval lesser the information/instruction that
need to be logged

Reason: First-Load optimization

Re-player Infrastructure

Collecting FLL
Pin Dynamic Instrumentation Luk et al., PLDI ’05

Replaying program execution using FLL

Virtutech Simics

A full system functional simulator

How to replay a checkpoint?

Replay using a functional simulator – eg: Simics
Can be integrated into conventional debuggers

Steps:
Load the binaries into the same address locations like in the
original location

Initialize state of PC and architectural registers

Start emulating instructions

For first loads, get the value from FLL, else get value from
simulated memory

Core Dump Not Required

Re-player Implementation Issues

Code Space
Address locations of application code and shared libraries in
application’s virtual address space need to be same as in the original
execution

Solution: Include starting locations of user and library code space in
the log

Developer should have access to binaries and libraries used by the
customer

Self-Modifying Code
Cannot be handled by BugNet

Reason: Instructions are not logged

Possible Solution
Log first load (fetch) of instructions

Replay Window Length

Program Execution

Execution of
Latest instance of
“buggy instruction”

Crash

Lower Bound on Replay Window
Length

Number of dynamic instructions
between the latest execution of the
buggy instruction and the crash

Bug Characteristics

79,309Null pointer dereferencew3m

17,966Stack Corruptionncompress

32,209Overflows global variablegzip

6,634Heap object Overflowtar

Replay Window length
(in instructions)

Nature of BugProgram

1,594,252Average

92Buffer Overflowpython

189,391Dangling pointernapster-1.52

74,590Null pointer dereferencegaim-0.82.1

7,543,600Buffer overflowxv-3.10a

2,537,326Null pointer dereferencetidy

18,030,519Dangling pointerghostscript

Lower bound on required replay window
length

AccMon
Zhou et.al.
MICRO’04

Sourceforge
Single Threaded

Sourceforge
Multi-Threaded

FLL Trace Size

Less than 1MB (<20M interval) is required to capture majority of bugs

1

10

100

1000

10000

g
h
o
s
ts

c
ri
p
t

g
n
u
p
lo

t-
1

g
n
u
p
lo

t-
2

g
z
ip

n
c
o
m

p
re

s
s

p
o
ly

m
o
rp

h

ta
r

ti
d
y
-1

ti
d
y
-2

ti
d
y
-3

x
v
-1

x
v
-2

g
a
im

n
a
p
s
te

r

p
y
th

o
n
-1

p
y
th

o
n
-2

w
3
m

A
v
g

F
L
L
 S

iz
e
 i
n
 K

B

BugNet Vs FDR (Xu, Bodik & Hill ISCA’03)

Flight Data Recorder (FDR) – Replay full system for debugging

Uses SafetyNet Checkpoint Mechanism Sorin et.al. ISCA’02
Logs values replaced by first stores
Recover initial full system state from core dump and store log

To enable replay, Interrupt, Prg I/O, DMA are logged separately
Requires more HW and larger logs than BugNet

 BugNet -- Focus on debugging only application code
First load checkpoint mechanism
Core dump, Interrupt, I/O, DMA logs NOT required

Performance overhead of both is negligible
Logging is off the critical path of main computation

Limitation

Debugging ability

Debugging OS code not possible
BUT, memory values modified during interrupts, I/O and DMA will
be captured in FLL

Hence, the application with limited interactions with OS can be
debugged

No Core Dump
Values of data structures untouched during replay window are
unknown
BUT, values responsible for bug can be found in the log or
reproduced during replay if the replay window is large enough
to capture the source of bug

If a variable is not accessed between the source of bug and the crash
then it should not be a reason for the crash

Limitation

Replay window not long enough
Problem:

Cause of bug lie outside replay window

Reason:
Limited storage space -- Depends on amount of main memory to
devote to capture logs

Solution:
OS can fine tune allocation

User Input
Memory usage at any instant of time

Summary

Bugs in released software are difficult to reproduce
Goal is to continuously record a light weight trace at the

 customer’s site to capture hard to reproduce bugs

Deterministic Replay Debugging
On average at least 1.5 million instructions need to be replayed to
capture bugs that we studied

Recording architectural state and load values are sufficient to enable
replay

Small FLL log size
No core dump
No I/O, DMA, Interrupt logs

Limitation
Debug only user code and shared libraries

Though it supports replaying across interrupts

< 3 MB100 Million instr

< 1 MB20 Million instr

FLL SizeReplay Window

