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Abstract

Debuggers have been proven indispensable in improv-
ing software reliability. Unfortunately, on most real-life
software, debuggers fail to deliver their most essential fea-
ture — a faithful replay of the execution. The reason is
non-determinism caused by multithreading and non-
repeatable inputs. A common solution to faithful replay
has been to record the non-deterministic execution. Exist-
ing recorders, however, either work only for data-race-free
programs or have prohibitive overhead.

As a step towards powerful debugging, we develop a
practical low-overhead hardware recorder for cache-
coherent multiprocessors, calledFlight Data Recorder
(FDR). Like an aircraft flight data recorder, FDR continu-
ously records the execution, even on deployed systems,
logging the execution for post-mortem analysis.

FDR is practical because it piggybacks on the cache
coherence hardware and logs nearly the minimal thread-
ordering information necessary to faithfully replay the
multiprocessor execution. Our studies, based on simulat-
ing a four-processor server with commercial workloads,
show that when allocated less than 7% of system’s physi-
cal memory, our FDR design can capture the last one sec-
ond of the execution at modest (less than 2%) slowdown.

1.  Introduction

An important challenge facing computer industry is to
develop reliable software and to maintain it after deploy-
ment. Debugging has been an effective solution to this

challenge. Essential to any debugger,deterministic replay
enables an expert to re-execute the program and zero in
bugs that faithfully re-appear. One problem in debuggin
that has been eluding a software-only solution is how
perform deterministic replay of multiprocessor execution.
As hardware costs diminish relative to software and mai
tenance costs [17], it is economical to seek hardware th
facilitates debugging of complex systems.

A common method for deterministic replay of multi-
processor executions is to record outcomes of all no
deterministic events, most notably those of memory rac
The key problem addressed in this paper is how to reco
memory races with small overhead, to enable recording
deployed systems. Low-overhead recording has been
open problem (see Section 2): Several systems recordsyn-
chronizationraces, but without recordingdata races, they
can faithfully replay only data-race-free programs. Unfo
tunately, programs being debugged may not identify sy
chronization or may contain data races, harmful o
harmless, and these races must be recorded for determi
tic replay.

Furthermore, no existing system supports determin
tic replay in the harshfull-systemenvironment, where
applications and diverse I/O devices from different ven
dors interact via operating system mechanisms on mu
threaded hardware. To illustrate the difficulties, consid
finding a bug that manifest itself only when a device by
vendor “A” interrupts a driver by vendor “B” between two
instructions of what should have been an atomic update

To enable full-system deterministic replay of multi
processor executions, we propose aFlight Data Recorder
(FDR) that adds modest hardware to a directory-bas
sequentially consistent multiprocessor. Like an aircra
flight data recorder, FDR continuously records the exec
tion in anticipation of a “trigger”, which can be a fata
crash or an software assertion violation. When triggere
FDR produces alog-enhanced core dumpfor a replay

This work is supported in part by the National Science Foundation,
with grants EIA-9971256, CCR-0093275, EIA-0103670, CCR-0105721,
and EIA-0205286, a Wisconsin Romnes Fellowship (Hill), Universitat
Politècnica de Catalunya and Secretaría de Estado de Educación y Uni-
versidades de España (Hill sabbatical), and donations from IBM, Intel,
Microsoft, and Sun.
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interval preceding the trigger, to be analyzed in an off-line
replayer (not developed in the paper). The core dump
includes three kinds of logs, each designed to meet perfor-
mance, space, and complexity requirements of a practical
recorder for continuous recording in deployed systems:

1) To restore aconsistent system stateat the beginning
of the replay interval, FDR modestly adapts an existing
approach that logs old memory state whenever the mem-
ory is updated [26], and dumps the complete memory
image at the time of the trigger (Section 3).

2) To record theoutcomes of all races, FDR logs a
(nearly minimal) subset of the races (Section 4). We build
on hardware ideas of Bacon and Goldstein [2] and the
software transitive-reduction optimization of Netzer [15].
This optimization avoids logging races whose outcomes
are implied by other races. A limitation of our design is its
assumption of sequential consistency (Section 4.3).

3) To recordsystem I/O, FDR logs interrupt timing
and treats device interfaces as pseudo-processors to ease
DMA logging (Section 5).

We propose a concrete FDR design, called FDR1,
(Section 6) and evaluate its practicality using full-system
simulation of a four-processor system with four commer-
cial workloads (Section 7). We qualitatively discuss scal-
ing to other systems and workloads (Section 8).

Our experiments show that low time and space over-
head allows FDR1 to be continuously enabled. Specifi-
cally, we find that for a system with modern processors
and 1GHz system clock, FDR1 generates logs at the band-
width of 25 MB/second/processor. (At the time of the trig-
ger, the logs are copied from memory, together with the
memory image, to an external device, e.g., a disk.) The net
result is that FDR1 can capture a replay interval of one bil-
lion cycles prior to the trigger with only 7% of the system
physical memory dedicated to its logs.

The paper concludes with a discussion of how an
offline softwarereplayerwould use FDR’s logs to perform
deterministic replay (Section 9).

This paper makes two key contributions:

• It designs an efficient full-system recorder, called
FDR, for sequentially consistent multiprocessors.
FDR allows deterministically replaying full-system
activities (including I/O) of a system with speculative
processors. FDR is easy to implement because it pig-
gybacks on the directory-based cache-coherence pro-
tocol. FDR is efficient because it records a small
(nearly minimal) subset of all races in the system.

• It evaluates the recorder on commercial workload
via full-system simulations.The simulations show that
FDR is practical: it generates relatively small logs an
its modest time overhead (less than 2%) allows it to b
continuously enabled.

2.  Related Work

This section relates FDR to existing work, which w
divide into deterministic replayers and data-race detecto
The former are related to FDR because they all contain
recorder of non-determinism; the latter are related becau
replaying detected races is sufficient to faithfully replay
multithreaded execution.

The upper half of Table 1 lists techniques for dete
ministic replay. In most significant contrast to FDR, thes
techniques do not handle operating system and I/O issu
which makes them unsuitable for full-system debugging
OS code in the presence of non-repeatable system inp
The software-based deterministic replay techniqu
InstantReplay [10] records the memory access order
means of variable versioning, generating large logs, es
cially for programs with fine-grain synchronization. The
recording techniques by Bacon and Goldstein [2] (the on
hardware recorder we know of) reduce overhead of so

TABLE 1. Summary of key related work.
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Goal: Deterministic Replay

Flight Data Recorder Always1 Yes Yes

InstantReplay [10] Yes No No

Bacon & Goldstein [2] Yes No Yes

Netzer [15] Yes No No

Deja Vu [4] Uni-Proc No No

TraceBack [6] Partially2 No No

Goal: Race Detection

Dinning&Schonberg [5] No No No

Min & Choi [14] No OS Yes

Eraser [22] No No No

Richard & Larus [20] No OS No

RecPlay [21] Sometimes3 No No

1 Within designed replay interval.

2 Only basic block execution history.

3 If synchronizations are identified & no data races.
2
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ware methods by exploiting snooping-based coherence,
but they log information on every coherence transaction.
FDR improves on their work by developing a variation of
Netzer’s [15] transitive reduction to suppress logging most
coherence transactions (see Section 4.1). Furthermore,
FDR operates in a distributed fashion, without a central-
ized bus or log buffer. Further reducing the logged infor-
mation is difficult without access to high-level program
semantics. DejaVu [4], for example, assumes multi-
threaded programs running on a single processor system,
which allows it to limit its recording to scheduler deci-
sions. Lastly, TraceBack [6] is a commercial software
product that, from the limited documentation available to
us, appears to (faithfully) record the control-flow path
taken by each thread, but not the memory race interleaving
among threads.

The bottom half of Table 1 lists detectors of data
races, as defined in Netzer and Miller [16]. Dinning and
Schonberg [5] developed an online monitoring algorithm
for detecting data races in Fortran doall/endall constructs,
based on an efficient execution-history compression tech-
nique. Their compression later became the foundation of
Netzer’s transitivity reduction [15]. Even lower overhead
was achieved with a hardware race detector of Min and
Choi [14]. Based on cache coherence, this detector
timestamps cache blocks with synchronization “era” (with
respect to fork/join/barrier synchronizations). The idea of
Richards and Larus [20] is similar to that of Min and Choi,
except that they build on a more flexible software memory
coherence protocol. Later, the Eraser detector [22] pro-
posed to detect improperly locked shared variables (not
necessarily races) by keeping track of the set of locks that
protected shared variables during the execution. Finally,
RecPlay [21] records synchronization races and finds the
first data race in the execution using a more expensive off-
line analysis. RecPlay can also perform deterministic
replay, but only up to the first race; other methods in this
group do not record enough information for replay.

3.  Recording System State

The first of FDR’s three logs ensures that an offline
replayer can re-construct theinitial replay state, i.e., the
system state at the beginning of the replay interval. The
initial replay state includes the architectural state of all
processors (e.g., registers, TLBs), the physical memory
image, and, optionally, the I/O state (Section 5).

A key challenge is that FDR does not know when a
replay interval starts, because it cannot predict when a
trigger (e.g., crash) will occur. Fortunately, this problem
has been solved many times before for backward error
recovery [7, 18]. Conceptually, a recorder periodically
saves a complete copy of the system state, called acheck-

point. An old checkpoint can be discarded as soon as the
is a new checkpoint old enough to begin a sufficiently lon
replay interval.

FDR uses a common method of incrementally crea
ing logical checkpoints, calledlogging, which saves the
old value of memory locations before they are update
When needed, a logical checkpoint is recovered by taki
the final system state and restoring the old values
reverse log order. A common optimization is to only lo
the first update for each memory location in each logic
checkpoint.

Ideally, FDR’s checkpoint scheme should 1) opera
with acceptable overhead since the recorder is “alwa
on”; and 2) operate with the cache-coherent shared-me
ory multiprocessors. Fortunately, two recently develope
approaches, ReVive [19] and SafetyNet [26], meet FDR
checkpoint needs. In this paper we evaluate FDR using
variation of SafetyNet, but we leave finding the bes
checkpoint solution to future work.

4.  Recording Memory Races

Starting from the initial replay state (i.e., the check
point), FDR must ensure that each replayed instructi
produces the same values as in the original execution. F
single-processor systems, it is sufficient to log syste
inputs (Section 5). For multiprocessor systems, it is al
necessary to log non-deterministic thread interleaving
i.e., the outcomes of races.

The key question underlying the FDR design is ho
much of the execution must be logged. The answ
depends on the memory model. FDR developed in th
paper assumes asequentially consistent(SC) memory sys-
tem. In an SC execution, all instructions from all thread
(appear to) form a total order that is consistent with th
program orderon each thread. In this total order, a loa
get value last stored to an address [9].1

To replay an SC execution, it is trivially sufficient to
log the total instruction order observed in the execution, b
recordingarcs that order all pairs of dynamic instructions
Many such arcs are, however, not necessary for repl
First, arcs between instructions that access different me
ory locations can be omitted because replaying indepe
dent instructions out of order preserves computed resu
Second, many arcs can be omitted because they
implied by other, more constraining arcs.

1. This definition applies even to systems that support unaligned, va
able-sized memory operations via modeling each B-byte load (store)
address A as an atomic sequence of byte loads (stores) to addresse
A+1,..., and A+B-1.
3
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22  Z := Share2

14  Local2 := 2

(a)

21  Y := Share1
20  Nop
19  Bneq $r1, $r0, −1

18  $r1 := Flag
17  Nop

16  Bneq $r1, $r0, −1

15  $r1 := Flag

j

31  Flag :=1

32  Share1 := 5

33  Share2 := 6
34  Flag := 0

35  Local1 := 3

i

17  Nop

14  Local2 := 2

22  Z := Share2
21  Y := Share1
20  Nop
19  Bneq $r1, $r0, −1

18  $r1 := Flag

(b)

16  Bneq $r1, $r0, −1

15  $r1 := Flag

31  Flag :=1

32  Share1 := 5

33  Share2 := 6
34  Flag := 0

35  Local1 := 3

i j

17  Nop

14  Local2 := 2

22  Z := Share2
21  Y := Share1
20  Nop
19  Bneq $r1, $r0, −1

18  $r1 := Flag

(c)

16  Bneq $r1, $r0, −1

15  $r1 := Flag

31  Flag :=1

32  Share1 := 5

33  Share2 := 6
34  Flag := 0

35  Local1 := 3

i j

16  Bneq $r1, $r0, −1

14  Local2 := 2

22  Z := Share2
21  Y := Share1
20  Nop
19  Bneq $r1, $r0, −1

18  $r1 := Flag
17  Nop

(d)

15  $r1 := Flag

31  Flag :=1

32  Share1 := 5

33  Share2 := 6
34  Flag := 0

35  Local1 := 3

i j

FIGURE 1. Four Views of an SC
execution with total order:
i:31 → j:14 → j:15 → i:32 → j:16 →
i:33 → i:34 → j:17 → j:18 → i:35 →
j:19 → j:20 → j:22.
These observations are formalized in Netzer’s so
ware recorder [15], which records a provably minimal s
of ordering arcs. Our design is a hardware variation o
Netzer’s recorder. Most notably, in order to deliver a sim
ple, low-overhead recorder, we decided to record a larg
set of arcs. In this section, we first illustrate the basic id
with an example and develop FDR for idealized hardwar
We then extend FDR to realistic hardware.

4.1.  An Example

We begin by examining the information that must b
logged to replay the SC execution of Figure 1. The figu
illustrates two processors,i and j, each executing instruc-
tions labeled by a local dynamic instruction count. We sa
that two accesses have aword (block) conflict if they
access the same word (block) and at least one is a stor

In an SC execution, all instructions appear to execu
in a total order. Figure 1(a) shows arcs that specify th
total order listed in the caption. Note that the total orde
includes the intra-processor program-order arcs.

Let us now show that not all arcs in this total orde
need to be recorded to faithfully replay the executio
First, deterministic replay can be ensured without recor
ing any program order arcs, because they can be trivia
reconstructed during replay.

Next, it is not necessary to record the order of inde
pendent instructions, e.g.,j:16→i:33, because no thread
execution will change if the order is reversed. Figure 1(
removes arcs of such order, leaving only word confli
arcs. These arcs are sufficient, but again not necessary

Figure 1(c) further improves by recording block con
flict arcs. For example, when variables “Share1” an
“Share2” are in the same cache block, word conflict ar
i:32→j:21 andi:33→j:22 are replaced by one block con
flict arc i:33→j:21. Nevertheless,i:33→j:21 and program
order arcsi:32→i:33 andj:21→j:22 still imply i:32→j:21
and i:33→j:22 by transitivity (i:32→i:33→ j:21→j:22).
Also note the new arc (j:14→i:35) created when variables
“Local1” and Local2” reside in the same cache block.

Finally, Figure 1(d) removes block conflict arcs tha
are implied by transitivity of other block conflict arcs and
program-order arcs (e.g., arci:33→j:21 is removed
because it is implied byi:33→i:34→j:18→j:19→j:20→
j:21). Note that the word conflict order is still preserved
Thus, this example can be deterministically replayed b
recording only three arcs!

The optimizations shown in this example are valid fo
all SC executions, as shown in [5, 15]. In summary, the
are three results:

• From SC to Word Conflict. Deterministic replay can
be enabled by recording program order on each pr
cessor and word conflict order between processors
4
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• From Word Conflict to Block Conflict. It is suffi-
cient to record program order and block conflict order.

• From Block Conflict to Transitive Reduction. It is
sufficient to remember the transitive reduction of pro-
gram-order and block conflict order. Thetransitive
reductionof {a<b, b<c, a<c} is {a<b, b<c}, because
a<c is implied by transitivity.

4.2.  Idealized Hardware

This section and Section 4.3 translates Netzer’s work
into hardware for our base multiprocessor. The translation
enables hardware to record block conflicting arcs by using
its cache and cache coherence messages. To make the
translation more straightforward, we initially simplify the
problem in two ways. First, let each processor’s cache be
as large as memory (no cache block replacements) and all
integers be unbounded (no wraparound). These assump-
tions ensure that the hardware does not forget information
about past conflicts. Second, assume that each processor
presents memory operations to its cache in program order,
the cache completely handles one operation before starting
the next one (blocking cache), and neither the processor
nor the cache do any prefetching. These assumptions
ensure that if a cache has a coherence request outstanding,
the request is by the next instruction its processor wishes
to commit. We remove these assumptions in Section 4.3.

We develop our techniques for directory protocols
where processors always act on incoming coherence mes-
sages before send outgoing messages (which precludes
some subtle buffering of invalidations [23]). We exploit
two properties of a directory protocol. First,coherence
messages reveal the arcs in the SC order. Let processori
execute some instructionsi1 to in, then send a coherence
message to processorj, the interconnect delivers the mes-
sage toj, and j processes the message before executing
instructionsj1 to jm. In this case, instructionsi1 to in will
appear in SC execution order beforej1 to jm. Second,a
directory protocol will reveal all block conflict arcs,
because if two accesses from different processors conflict
at the block granularity, the accesses are always ordered
by intervening coherence messages. Otherwise, coherence
will be violated with one processor storing a block that
another processor could still be loading or storing. For
example, let’s assume processorj requests an modified
copy (state M) of a block that is currently non-exclusively
owned (O) by processori and read-only shared (S) by pro-
cessorsk and l. Order is provided by processori’s data
response toj, processork’s invalidation acknowledgment
to j, and processorl’s invalidation acknowledgment toj.

Table 2 illustrates the per-processor state and actions
sufficient to log memory order in our idealized system. We
augment each processorj with an instruction count, IC ; a
log buffer, LOG ; and, a vector of instruction counts,

VIC[P] , with an entry for each other processor. We als
augment each cache block frame b at processorj with
cache instruction count, CIC[b] . The actions illustrated in
Table 2 piggyback information to each coherence reply
enable the receiver to log a block conflict arc, if it is no
implied by transitivity. Specifically, each processorj takes
the following actions:

• On instruction commit, it updates its IC and, if the
instruction is a load or store, the corresponding CIC

• When sending a coherence reply,j includes its own
identifier and the IC when it last accessed the bloc
being transferred (j:CIC[b]). Thus the coherence reply
identifies thebeginning of a block conflict arc.

TABLE 2. State and Actions for Processor j
to Log Memory Order.

State at each processorj
IC : Instruction count of last dynamic instruction

committed at processorj.
LOG : Unbounded log buffer at each processorj.
VIC[P] : Vector IC for transitive reduction: VIC[i] retains

latest IC received byj from i. P is the total
number of processors.

CIC[M] : Cache IC: CIC[b] gives IC of last load or store
of block b in j’s cache.M is the total number of
memory blocks.

Actions at each processorj
On commit of instruction insn {

IC++ // After, IC is insn’s dynamic instruction count
if (is_load_store(insn)) {

// b must be cached before insn can commit
b = block_accessed(insn)
// CIC[b] = the last IC to access block b
CIC[b] = IC

}
}
On sending coherence reply for block b to prock {

// Arc begins at processor j’s last instruction to access
// block b, which is j:CIC[b]
send.id =j
send.ic = CIC[b]
send(send.id, send.ic, …)

}
On receiving coherence reply for block b from proci {

// Arc ends at the next instruction processor j will
// commit, which is j:(IC+1)
receive(rec.id, rec.ic, …)
if (rec.ic > VIC[i]) {

// Transitive reduction: only log arc if it began
// at i later than last arc received from i.
Append to LOG =

(rec.id, rec.ic, IC+1)
VIC[ i] = rec.ic

}
}

5
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• When receiving a coherence reply fromi (e.g., data
response or invalidation acknowledgment),j recog-
nizes that the block conflict arc willend at the next
instruction it wishes to commit (j:IC+1). It logs the
arc if it isnot implied by transitivity.

The transitive reduction works as follows. The new
arc began ati at a CIC recorded in message field rec.ic.
VIC[ i] records the largest rec.ic that has previously been
sent fromi to j. If rec.ic is greater than VIC[i], then the arc
is logged and VIC[i] is updated. Otherwise the new arc is
implied by transitivity, since there must be an old conflict
arc whose rec.ic was larger (and is already recorded in
VIC[ i]), but was already processed atj (with a smaller IC
than for the new arc’s termination).

Our hardware implementation of the transitive reduc-
tion is a variation of Netzer’s optimal algorithm. To imple-
ment his original algorithm, both the cache (i.e., the CIC
array) and the coherence messages would have to contain
the entire VIC vector, as opposed to only the local IC
value. With this simplification, we lose some information
about which arcs are implied by already logged arcs. This
modestly reduces the effectiveness of the transitive reduc-
tion on the workloads we have studied. This simplifica-
tion, however, greatly reduces FDR’s hardware overhead.

In summary, our algorithm allows the idealized sys-
tem of this section to use coherence hardware to imple-
ment the techniques Netzer proved correct. Next, we seek
to make the hardware practical.

4.3.  Realistic Hardware

This section extends the algorithm for idealized hard-
ware to handle the “implementation details” of speculative
processors, finite non-blocking caches, and finite integer
fields of a realistic system. Note that the realistic system
still implements the SC memory model. We use send and
receive observations as lemmas for optimizations.

Send Observation.When a processor j at instruction
count IC sends a coherence reply for block b, it may
include any instruction count in the interval [CIC[b], IC].

In Section 4.2, processorj always included CIC[b],
the instruction count whenj last accessed b. This action
ordered all instructions that processorj executed up to
instruction CIC[b] before the block conflict arc of this
message. In fact, however, processorj has already exe-
cuted instructions up to its current instruction count, IC
(IC ≥ CIC[b]). So j:IC is actually ordered before the mes-
sage in the SC execution. Thus,j can alternatively send
any value in the interval [CIC[b], IC]. Most of these values
will not begin a block conflict arc (because their instruc-
tions don’t access block b), but they are arcs in the SC exe-
cution and always imply the block conflict arc that begins
at CIC[b] by transitivity. We apply the send observation by

always sending the current IC. However, this modest
reduces the effectiveness of the transitive reduction. In t
extreme, eliminating all CIC’s is permitted, but doing s
would render the transitive reduction ineffective.

Receive Observation.When a processor j at instruction
count IC receives a coherence reply for block b, it ma
associate the arc with the next instruction it wishes
commit, IC+1, regardless of whether the next instructio
(IC+1) accesses block b or not.

In Section 4.2, processorj associated the arc with
instruction IC+1, but was assured that IC+1 access
block b to terminate a block conflict arc. This assurance
not necessary. Instead, we can allowj to associate the arc
with IC+1 regardless of whether it accesses b. This obta
an arc of the SC execution that is not necessarily a blo
conflict arc. If j subsequently accesses b at IC´ (IC´
IC+1) the recorded arc will imply the block conflict arc
terminating at IC´ by transitivity. Ifj never accesses b, then
an unnecessary arc is recorded. Processorj cannot access b
before IC+1, becausej will stall for coherence permission.

It is important that even with send and receive obse
vations, we do not accidentally record conflict arcs th
form a cycle with program order arcs in the executio
graph. Such a cycle can cause replayer deadlock. Fo
nately, the ordering arcs of an SC execution cannot form
cycle [24]. Thus, the arcs recorded correspond to an a
clic graph, since all SC arcs form an acyclic graph, and
transitive reduction remains acyclic.

Speculative Processors.In a speculative processor, non
blocking caches and out-of-order execution allow cohe
ence requests for blocks that arenot accessed by the next
instruction to commit. In fact, a cache block may be spe
ulatively accessed before its coherence message arrive
processor implementing SC, however, appears to acc
blocks when instructions commit; therefore, an ear
access will always appear to follow the message. As
result, the receive observation continues to hold (i.e., if w
associate each coherence reply with IC+1, the actions
Table 2 continue to operate correctly).

Finite Caches.Table 2 assumes each processor’s cac
could cache all M memory blocks, whereas real cach
can only hold C blocks where C << M. The latter mus
replace blocks and will have cache instruction counts on
for currently cached blocks. Assume each processorj can
silently replace shared blocks. When a later request fromk
seeks to invalidate a blockb that j no longer caches,j
sends an acknowledgment with its current instructio
count, IC (sincej no longer has a CIC entry for the block)
The correctness is shown by the send observation. Sim
larly, each processorj can write back owned blocks to the
directory at memory. The directory leavesj in its now-
unused owner field to denote the last writer. Until th
6
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block is owned again, subsequent coherence requests askj
for its current IC. We find that this situation occurs rarely,
since actively shared blocks are rarely written back.

Unordered Interconnect.Table 2 assumes at most one
message is been transmitted from processori to j in any
given time. With speculative processors, multiple mes-
sages from processori can arrive at processorj out of
order. However, since each message contains the entire IC
(as oppose to a change of IC) for the beginning of the arc,
we associate the ending of the arc with the current com-
mitting instruction. Receive observation ensures the cor-
rectness. Nevertheless, message re-ordering can affect the
effectiveness of the transitive reduction.

Finite Integer Fields.Table 2 assumes unbounded
counters, while practical hardware must use finite
counters. A trivial solution is to use 64-bit counters since
they will not overflow for decades. When a recorder uses
checkpointing (to solve Section 3’s problem), fields can be
much smaller, since they can be reset at checkpoints. If
checkpoints always occur less than four billion instruc-
tions apart, for example, 32-bit unsigned ICs are sufficient.

Moreover, the CIC field in each cache block can be
allowed to wraparound to both avoid resetting them at
checkpoints and allow them to be small (e.g., 16 bits).
With a coherence reply, always send min((IC &
0xffff0000)|CIC[b], IC). Since the first term is at least as
large as the true CIC, the value sent is in the interval
[CIC[b], IC], as is allowed by the send observation.

Sequential Consistency.A significant limitation of the
FDR designed in this paper is that it assumes sequential
consistency (SC). The design will also work in systems
where a relaxed memory consistency model is imple-
mented with SC (as is allowed). However, the current
design does not work for relaxed implementations that
allow some memory operations to execute out of program
order, in part because it assumes a single instruction count
is sufficient to indicate which of a processor’s memory
operations have executed. A recorder for relaxed imple-
mentation is possible (e.g., by completely recording the
order of memory operations and coherence transfers), but
future work is needed to make such a recorder efficient.

5.  Recording Input/Output

The third task of FDR is ensuring that the log-
enhanced core dump contains sufficient information to
enable an offline replayer to deterministically replay I/O
events in the replay interval. This section discusses the
information FDR saves, assuming the offline replayer can-
not re-create the input content (e.g., from a remote
source), but can model a processor taking an exception,
provided it is given the cause (interrupt or trap).

Program I/O. Most systems allow processors to execu
loads and stores to addresses mapped to devices
space). FDR logs the values returned by I/O loads, so th
can be replayed. It does not log I/O store values, becau
they can be regenerated during replay.

Interrupts and Traps. Interrupts are asynchronous
events (e.g., disk read completion) that may arrive at a p
cessor between any two instructions. FDR logs both t
content (e.g., interrupt source) and instruction count
when an interrupt arrives. This gives the replayer sufficie
information to invoke the same exception.

Traps are synchronous events caused by a spec
instruction interacting with system state (e.g., a TL
miss). FDR logs neither the content nor the order of trap
because they can be inferred by a replayer that exac
models the system. Alternative designs could log som
traps to simplify replayers.

Direct Memory Access (DMA).Most systems allow
DMA writes(DMA reads) whereby devices write (read) a
series of memory blocks without involving processors. F
each block in a DMA write, we assume a DMA interfac
updates memory and has the directory protocol invalida
any previously cached copies. For a DMA read, the DM
interface obtains the latest version of the block.

Our FDR logs DMA by modeling DMA interfaces as
pseudo-processors and applying the memory-race logg
techniques of Section 4. When a DMA interface seeks
write a block, it logs the ICs from invalidation acknowl-
edgments (to order the write after previous operation
logs the data written, (since it comes from outside the sy
tem), increments its IC (treating the write like a block-siz
store instruction), and has the directory remember it as t
previous owner (to order the write before subsequent op
ations). A DMA read operates similarly, but doesn’t lo
data, because it can be regenerated during replay.

6.  FDR1: Example Recorder Hardware

This section provides a concrete example of the Flig
Data Recorder system. Figure 2 illustrates the syste
which we call FDR1. FDR1 adds to a directory-based S
multiprocessor several structures shown in shaded box
The design stores all logs in physical memory. Evaluatio
will show that FDR1 enables the design goal of being ab
to replay intervals of one second. Below we describe ho
the structures function to implement FDR1.

Recording System State.FDR1 creates logical check-
points to begin potential replay intervals (Section 3) b
adapting SafetyNet [26]. SafetyNet creates a logic
checkpoint with a physical checkpoint of processor regi
ters and by logging cache blocks in Cache and Memo
Checkpoint Log Buffers. A checkpoint number field in
7
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each cache block ensures a block is only logged the first
time it is updated or transferred after a checkpoint. FDR1
reduces the checkpoint number to a checkpoint bit, since it
only recognizes one active checkpoint.

FDR1 requires logical checkpoints much further back
(1 second) than was the focus of the original SafetyNet
design (<1 ms). For this reason, as Figure 2 illustrates,
FDR1 uses Cache and Memory Checkpoint Log Buffers
only to tolerate bursts, then compresses the data using
Lempel-Ziv [29] implemented in hardware (LZ77 box),
and finally saves it in physical memory that is reserved
from the operating system (shaded). Logging a mem-
ory/cache block takes 72 bytes for 64-byte data and 8-byte
physical address. Other hardware implementations of the
data compressor are also possible [27].

Since FDR1 checkpoint frequency is relatively low,
the overhead to start one checkpoint can be tens of thou-
sands of cycles without significant impact to normal exe-
cution. For this reason, FDR1 quiesces the system to take a
checkpoint (less aggressive than SafetyNet) using a stan-
dard 2-phase commit (as in ReVive [19]). When a cycle
count reaches a checkpoint threshold, a processor com-
pletes current activities, marks the end of the log for the
previous checkpoint interval, and tells a system controller
it is ready. When the system controller notifies that all pro-
cessors are ready, a processor writes its register and TLB
state to physical memory (4248 bytes for SPARC V9 with

64-entry I/D TLBs), clears a checkpoint bit in each cach
block [13, 25]. Each processor then coordinates with t
system controller to complete the checkpoint handshake

For a replay interval of one second, a reasonable p
icy is to take a logical checkpoint every 1/3 second an
reserve physical memory to store execution logs for fo
checkpoints. When the second-oldest checkpoint is 1 s
ond old, the oldest checkpoint is discarded, so that its st
age can be used for the logs of the next checkpoint. Th
policy provides a replay interval of between 1 and 4/3 se
onds, depending on timing of the trigger.

Recording Memory Races.FDR1 records memory races
using the algorithms in Section 4. As Figure 2 illustrate
it logs information on memory races in the Memory Rac
Log Buffer, which is then compressed with Lempel-Ziv
and stored in reserved physical memory. Each entry is
bytes: 1 byte for the other processor’s ID, 4 bytes for th
other processor’s IC, and 4 bytes for this processor’s I
As Figure 3 illustrates, the processor core is augment
with an IC field, the cache controller is augmented wit
VIC fields, and each cache block frame is augmented w
a CIC entry. With 32-bit CIC fields and 64-byte cach
blocks, the cache overhead is 6.25%. IC, CIC, VIC a
reset at checkpoint boundary.

Recording I/O. FDR1 records I/O with the algorithms in
Section 5. It logs input data from I/O loads in the Inpu
Log Buffer (8-bytes per entry) and interrupt numbers i
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FIGURE 2. Example MP system with the Flight Data Recorder. We assume a base
system that implements sequential consistency using per-processor cache
hierarchies and a MOSI write-invalidate directory protocol. The system supports
conventional I/O. For FDR1: The Input Log Buffer and Interrupt Log Buffer are
close (on the same die) to processor core. Race Log Buffer and Cache Checkpoint
Log Buffer are close to cache. Memory Checkpoint Log Buffer and DMA Buffers
are close to memory controller and DMA interface, respectively.
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the Interrupt Log Buffer (4-byte IC and 2-byte interrupt
number per entry). Additionally, DMA engines in the sys-
tem act like pseudo-processors with their own IC and VIC.
They log entries in the DMA Race Log Buffer (9-byte
entry as in the Memory Race Log) to order DMA. And
they log DMA store values in the DMA Log Buffer (8-
byte address and variable-sized data).

The Trigger. When triggered (e.g., on a crash), the FDR1
system controller first stops processor execution and
flushes all log buffers. Next, it copies the contents of all
physical memory to an external device, such as a disk.
Since all logs are stored in the memory, this core dump
constitutes the log-enhanced core dump that enables deter-
ministic replay. The size of the log-enhanced core dump is
dominated by the size of the memory image core dump,
since logs are a small fraction of all physical memory.

7.  Evaluation Methods

We evaluate FDR1 for a four-processor machine using
execution-driven multiprocessor simulation. We obtain the
functional behavior of a multiprocessor Sun SPARC V9
platform architecture (used for Sun E6000s) using Vir-
tutech Simics [11]. Simics mimics a SPARC system in
sufficient detail to boot unmodified Solaris 9.

We obtain performance estimation by extending the
Wisconsin performance models [1, 12]. To facilitate com-
mercial workload simulation of adequate length to stress
FDR1, we model a simple in-order 1-way-issue 4 GHz
processors with 1 GHz system clock. Despite SPARC V9
architecture specifyingTotal Store Order(TSO) as the
default memory model, our simulator implementsSequen-
tial Consistencyas a correct implement of TSO. We model
a MOSI directory protocol, similar to that of the SGI Ori-
gin, with and without FDR1. The simulator captures all
state transitions (including transient states) of the coher-
ence protocol in the cache and memory controllers. We

model a 2D-torus interconnection as well as the contenti
within this interconnect, including contention with and
without FDR1 message overhead.

We exercise FDR1 with four commercial applications
described briefly in Table 4 and in more detail b
Alameldeen et al. [1]. We also adopt that paper’s approa
of simulating each design point multiple times with smal
pseudo-random perturbations of memory latencies to m

IC

VIC

CIC

Log Buffer

Memory

L2 Cache

Cache

Controller
Coherence

L1_D$L1_I$

Races

Processor

Pipeline

FIGURE 3. FDR1 processor/caches.

TABLE 3. Target System Parameters.
Number of Processors 4

L1 Cache (I and D) 128 KB, 4-way

L2 Cache 4 MB, 4-way

Memory 512MB/processor, 64Bblocks

Miss From Memory 180 ns (uncontended, 2-hop)

Interconnection 2D torus, link B/W=6.4 GB/s

Memory Reservation 34 MB (7% of 512 MB)

Memory Checkpoint Log
Buffer

256KB, output B/W=70MB/s,
72B entries

Cache Checkpoint Log 1024 KB, 50 MB/s, 72B

Memory Race Log 32 KB, 10 MB/s, 9B

Interrupts Log Buffer 64 KB, 10 MB/s, 6B

Input Log Buffer 8 KB, 10 MB/s, 8B

DMA Log Buffer 32 KB, 10 MB/s, variable size

Checkpoint Interval 333,333,333 cycles = 1/3 sec.

System Barrier Cost 10,000 cycles = 10 us

TABLE 4. Wisconsin Commercial Workloads.

OLTP : Our OLTP workload is based on the TPC-C v3.0
benchmark using IBM’s DB2 v7.2 EEE database managemen
system. We use a 800 MB 4000-warehouse database stored
five raw disks and an additional dedicated database log disk
There are 24 simulated users. We warm up for 10,000 transa
tions, and we run for 3 checkpoints.

Java Server: SPECjbb2000 is a server-side java benchmark
that models a 3-tier system. We used Sun’s HotSpot 1.4.
Server JVM. Our experiments use 1.5 threads/processor an
1.5 warehouses/processor (~500 MB of data). We warm up fo
100,000 transactions, and we run for 3 checkpoints.

Static Web Server: We use Apache 2.0.36 for SPARC/Solaris
8, configured to use pthread locks and minimal logging as th
web server. We use SURGE [3] to generate web requests. W
use a repository of 20,000 files (totalling ~500 MB). There are
15 simulated users per processor. We warm up for ~80,00
requests, and we run for 3 checkpoints.

Dynamic Web Server: Slashcode is based on a dynamic web
message posting system used by slashdot.org. We use Sla
code 2.0, Apache 1.3.20, and Apache’s mod_perl 1.25 modu
for the web server. MySQL 3.23.39 is the database engine. Th
database is a snapshot of slashcode.com and it contains ~3,0
messages. A multithreaded driver simulates browsing and pos
ing behavior for 12 users/processor. We warm up for 240 trans
actions, and we run for 3 checkpoints.
9
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gate the impact from the workload variabilities. Error bars
in our results represent 95% confidence intervals of the
mean.

We have argued that FDR algorithms are sufficient for
deterministic replay. Not surprisingly, however, we found
it necessary to debug the FDR1 implementation. We found
several non-trivial bugs related to the protocol races with a
random testing approach [28]. We developed a multi-
threaded program whose final output is sensitive to the
order of its frequent data races. In particular, the program
computes a signature using a multiplicative congruential
pseudo-random number generator [8]. We run the program
on a memory system with pseudo-randomly perturbed
latencies; each of ten thousands of runs produces a unique

signature. If the replayed program computes a differe
signature, either the FDR implementation or the replay
is buggy. We have discovered several bugs through o
random testing. This approach increases our confidence
the FDR1 implementation, but doesnot prove it correct.

8.  Experimental Results

This section evaluates FDR1 on a four-processor sy
tem to show that the Flight Data Recorder is practical, n
just theoretically possible.

Performance Impact.Figure 4 shows that FDR1 mod-
estly affects program runtime. Specifically, it depict
benchmark runtimes (smaller is better) without and wi
FDR1 (normalized to the system without FDR1). Th
slowdown due to FDR1 overhead is less than 2% and n
even statistically significant for Apache and Slash who
95% confidence intervals overlap. This result is due
checkpoints being rare (so checkpoint overhead are p
only once every 333 million cycles) and, as is discuss
below, the log bandwidth is sufficiently small (rarely caus
ing processor stalls due to buffer overflow).

Importantly, results show that it is acceptable to leav
FDR1 “always on” in anticipation of a trigger. We do no
evaluate the time to create a log-enhanced core dump a
a trigger, because this time is not critical in most applic
tions of FDR.

Log Size.Figure 5 shows FDR1 log sizes. It plots log
growth rate in MB/second/processor without (left) an
with (right) compression. For these workloads, the lo
bandwidth requirements are acceptable and the phys
memory needed to store a 1-second replay interval is mo
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est (e.g., 34 MB/processor for 1.33 second of the longest
replay interval is less than 7% of a 512 MB/processor
memory).

Figure 5 reveals two additional insights, via breaking
logs into six parts: memory checkpoint log, cache check-
point log, memory race log, DMA log, input log and inter-
rupt log. First, memory and cache checkpoint logs
dominate log size. This says that the race logging tech-
niques developed in this paper work well and that future
optimizations may focus on better checkpointing (e.g., by
replacing SafetyNet). Second, except for OLTP, I/O log
sizes are even smaller, in large part, because I/O is not fre-
quent in these workloads.

Scaling.The above results showed that, for these work-
loads, FDR1’s performance overhead and log sizes are
reasonable. These workloads are much larger and do more
I/O than the standard SPEC and SPLASH workloads.
Nevertheless, real multiprocessor workloads may generate
larger checkpoint logs (if worse locality adversely affects
checkpoint log) and may do more I/O. Even the bad case
of the sustained, peak input of a 1 Gb/s network interface,
however, would increase uncompressed log storage by
only 32 MB for each of the four processors. On the other
hand, even today many multiprocessors ship with 1-2 GB
of memory per processor, making even 100 MB per-pro-
cessor logs viable. Moreover, there is nothing magical
about our 1-second replay interval target. Larger work-
loads can target one-tenth of a second and still enable
replays of the last 100 million cycles. Furthermore, alter-
native designs could use larger external storage (e.g. disks)
to record much longer intervals or I/O intensive applica-
tions. Finally, we also found that FDR1 operates well in
16-processor systems.

9.  Offline Replayer Discussion

A replayer can use the log-enhanced core dump pro-
vided by FDR to perform deterministic replay of the
replay interval. A reasonable design lets an expert to
debug using a high-level debugger that controls a low-
level replayer.

The replayer would first initialize a core dump with
the system state at the beginning of the replay interval. A
replayer working with SafetyNet, for example, would
select the first available register checkpoint and unroll
memory logs. The replayer then replays the interval. It
handles memory races by using log entries to constrain
when it steps each processor (e.g.,j’s log entry for
i:34→j:18 will stop j before instruction 18 untili com-
pletes instruction 34). The replayer also inserts I/O load

values, interrupt values, and DMA store values at appr
priate instruction counts. We developed a simple replay
for random testing (Section 7).

A full-function replayer must also provide the debug
ger with an interface to start, stop and step the executio
query and modify state, and other standard features o
modern debugger. We leave developing a full-functio
replayer for future work. One challenge is that the replay
enables access only to variables that reside in physi
memory during the replay interval (because FDR1 do
not currently capture disk state). State outside physic
memory, however, cannot affect program execution un
they are loaded into memory.

10.  Conclusions

This paper develops a hardware technique, theFlight
Data Recorder, for a multiprocessor system that continu
ously logs execution activity to enable full-system offlin
deterministic replay of a time interval preceding a sof
ware trigger. We develop a complete solution that logs a
system activities, including OS and I/O. We show th
Flight Data Recorder can be “always on” in anticipation o
being triggered, because time and space overheads
modest. We present quantitative results for four comme
cial workloads and discuss how results scale with numb
of processors and memory size.

The Flight Data Recorder presented in the pap
assumes sequential consistency implemented with dir
tory cache coherence. Future work includes developi
equally efficient recorders for other memory consisten
models (e.g., Intel IA-32 processor consistency) and oth
coherence protocols (e.g., snooping). While the detail
hardware design may change, the approach of using
coherence protocol to trace memory races still applies.
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