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Abstract

Jockey is an execution record/replay tool for Linux. It
records and replays invocations of system calls and CPU in-
structions with context-dependent effects, without requiring
changes to the target program, operating system, or debug-
ger. Jockey is implemented as a user-space library that runs
as a part of the target process. While this design is the key
for achieving Jockey’s goal of safety and ease of use, it also
poses challenges. This paper discusses some of the practi-
cal issues we needed to overcome, including low-overhead
system-call capturing, resource-usage segregation between
Jockey and the target process, checkpointing in the presence
of the dynamic linker, and an interface for fine-grain control
of Jockey’s behavior. Jockey has been applied extensively
to debug real-world programs. We our experiences using
Jockey as well.

1 Introduction

Jockey is a record/replay tool for Linux. It logs the execu-
tion of an ordinary program and replays it deterministically
later. Jockey is designed to help debug programs that com-
municate with the operating system or other computers in a
complex fashion. We plan to make Jockey publicly avail-
able viahttp://www.freshmeat.net, pending legal autho-
rization.

Jockey was originally developed as a debugging aid
for FAB (Federated Array of Bricks) [23]. FAB is a
high-availability disk array built on a cluster of commod-
ity servers. It provides accesses to logical volumes to
iSCSI clients using complex peer-to-peer-style replication
and erasure-coding protocols.

Traditional debuggers, such as gdb, provide compre-
hensive support for debugging single-node, sequential pro-
grams. They are, however, not as useful for interactive or

distributed programs such as FAB [10, 4]. We identify three
key problems and discuss how Jockey alleviates them.

First, the execution of such programs is inherently non-
deterministic. The behavior of a process will diverge, de-
pending on interactions with the OS, the user, or other
processes. Jockey helps debug such programs by record-
ing every non-deterministic choice the process makes, and
replaying the execution as many times as the developer
wishes. Thus, debugging for a non-deterministic program
is reduced to that for a sequential, repeatable program.

Second, these programs often run for a long period of
time, either because they need lots of resources (e.g., sci-
entific computation), or they are server programs (e.g., FAB
and distributed hash tables), or they need substantial user in-
teractions (e.g., spreadsheet). Simply reproducing the bug
often tests a developer’s patience. Jockey alleviates this
problem by transparently checkpointing the process state
during execution. The developer can replay from any check-
point and easily “time-travel” through the history of execu-
tion to diagnose bugs. Checkpointing also bounds the log-
space overhead, as log records older than the checkpoint can
be discarded.

Third, running a distributed system such as FAB requires
starting processes on multiple computers, which is cum-
bersome and increases the turn-around time for program
development. Jockey alleviates this problem by recording
and replaying each process independently—after recording
the execution whole system, the developer can replay each
process under a traditional debugger. This can also be a lim-
itation; Jockey could be less useful when one wants to look
at the execution of the whole system at once. We discuss
our experiences in Section 5.2.
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1.1 Goals and approaches

Jockey is designed with two pragmatic goals in mind. First
is ease of use: Jockey must be easy and safe to deploy. It
should work without requiring changes to the target pro-
gram, the operating system, or the debugger. Second isgen-
erality. Jockey should be able to handle generic Linux pro-
grams, not just those written in a particular programming
language or API, such as MPI or CORBA [11].

We achieve the first goal by implementing Jockey as a
user-space library that runs as a part of the target process.
In contrast to kernel-based approaches [26], it can be used
by anyone without administrator privilege or a patched ker-
nel. Developers can continue using their favorite debuggers
without change. In addition, this design allows the devel-
oper or the target program to control or extend Jockey easily,
as we discuss in Section 4. Our second goal is achieved by
recording and replaying events at a fairly low level—system
calls and CPU instructions.

1.2 Non-goals

We do not try to make program execution under Jockey
identical to native execution (without Jockey). Because
Jockey internally needs to perform mmap and file accesses,
the mmap addresses and file descriptors allocated to the tar-
get process may differ between a native and a Jockey run.
This usually does not cause an additional burden, because
programs traced by Jockey are usually non-deterministic to
begin with.

Similarly, performance is a secondary goal. Jockey is
used only during testing and debugging. Some slowdown
under Jockey should be acceptable, as long as it does not al-
ter the target program’s behavior qualitatively. In practice,
as we show in Section 5.1, Jockey’s overhead is at most 30%
for I/O intensive programs, more often close to zero—well
within our limit of tolerance.

1.3 Example

The meat of Jockey islibjockey.so , an x86 shared-
object file. Figure 1 shows a simple program that reads from
/dev/random , Linux’s random number device. Figure 2
shows the most basic use of Jockey. Running a program
with Jockey requires no change to the source code or the ex-
ecutable file. Simply loadinglibjockey.so on startup
causes Jockey to take control of the process. In this ex-
ample, Jockey intercepts the call to theread system call
made viagetc . It logs the value read during the recording

// test1.c
int main() {

FILE * f = fopen("/dev/random", "r");
printf("%x\n", getc(f));

}

Figure 1: A simple program, test1.c , with a non-deterministic
behavior.

% cc -o test1 test1.c
% LD_PRELOAD=libjockey.so \

JOCKEYRC="replay=0" ./test1 # recording
38
% LD_PRELOAD=libjockey.so \

JOCKEYRC="replay=1" ./test1 # replaying
38

Figure 2: The most basic use of Jockey. The program
outputs the same number even though it is reading from
/dev/random . Setting LD PRELOADcauses the dynamic linker
to load libjockey.so before other object files. The JOCKEYRC
environment variable passes parameters to libjockey.so .

phase. When replaying, Jockey reads the value from the log
without actually reading from/dev/random . Jockey can
also be invoked in several different ways, as illustrated in
Figure 3.

1.4 Challenges and limitations

Our decision to co-locate Jockey with the target process
poses challenges and limitations. First, Jockey could be
compromised by a seriously buggy or malicious target
program—if it wishes, for example, the target program can
destroy a memory region used internally by Jockey. Jockey,
however, tries to prevent such problems by segregating re-
sources used by Jockey and the target as much as possible,
as discussed in Section 3.2.

The second challenge is recording and replaying events
that are not directly initiated by system calls. We de-
scribe our solutions to two such types of events, signals and
memory-mapped file I/Os in Sections 3.5 and 3.6. There
are, however, events that are fundamentally impossible to
capture. For example, memory access races that happen
with kernel-based pthreads cannot be replayed, because in-
kernel context switches and SMP cache-coherence proto-
cols are out of Jockey’s control. For this reason, Jockey
does not support kernel multi-threading. Similarly, Jockey
does not support any program or API that interacts with
other processes (or devices) via shared memory or files—
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1 % LD_PRELOAD=libjockey.so \
2 ./test1 --jockey=replay=0 # recording
3 82
4 % LD_PRELOAD=libjockey.so \
5 ./test1 --jockey=replay=1 # replaying
6 82

8 % jockey --replay=0 ./test1 # recording
9 a9

10 % jockey --replay=1 ./test1 # replaying
11 a9

13 % cc test.c -ljockey
14 % ./test1 --jockey=replay=0 # recording
15 c1
16 % ./test1 --jockey=replay=1 # replaying
17 c1

Figure 3: Alternative ways of running a program under Jockey.
Lines 1 to 6 shows an alternative method that passes a command-
line parameter --jockey= . This parameter is parsed by
libjockey.so . For this method to work, the target program
must be designed to ignore a command-line string that starts with
--jockey= . Lines 8 to 11 show how one can start the test program
from the jockey frontend. jockey just sets the environment vari-
ables and execve ’s the target program. Jockey can also be linked
manually to the target program, instead of via LD PRELOAD. Lines
13 to 17 shows how that can be done.

e.g., uDAPL [1] for memory-mapped network I/Os. Note
that Jockey does support user-space threads, such as Cap-
priccio [30]—in fact, FAB is built on a similar package.

2 Related work

Execution record/replay has long been advocated as an ef-
fective debugging method [6, 22, 21].

Bugnet was one of the earliest record/replay tools [32].
It intercepted I/O activities by the processes and took
checkpoints of the system periodically. Bugnet, however,
supported only programs written to a special API, un-
like Jockey that supports generic Linux programs. Flash-
back [26] is the most recent work along this line. It offers
a similar set of functionalities as Jockey—recording and
replaying system calls and fork-based checkpointing—but
Flashback is offered as a kernel extension. As such, it is
less easy and safe to use than Jockey.

In a slightly different approach, some systems record
and replay individual memory accesses [19, 16, 25, 7].
They have several potential advantages over event-based
approaches like Jockey. First, some of them enable re-
verse execution—stepping CPU instructions literally back-

ward [19, 7]. Second, they could be more generic because
they need not know deeply about the semantics of system
calls and other interactions with OS. However, these sys-
tems require special compilers and have a large logging
overhead. Even with sophisticated optimizations, they gen-
erate logs at the rate of multiple megabytes per second for
CPU-intensive programs [16, 25]. Jockey, in contrast, gen-
erates only a few hundred bytes per second for such pro-
grams, as we show in Section 5.1.

2.1 Record/replay using virtual machines

Revirt is a virtual machine that records and replays low-
level interrupts and device activities [2]. It has been proved
to be useful for network intrusion detection and diagnos-
ing kernel bugs [5]. Several other papers also propose
distributed-system emulation using virtual machines [3, 17].
While these systems are powerful, they are also cumber-
some to use—for example, one must create a full file system
tree for each virtual machine. They are overkill when one is
interested only in debugging user-space programs. Jockey is
designed to be simpler and easier to use than these systems.

2.2 Record/replay for parallel and distrib-
uted programs

Deterministic record/replay has been most effective in par-
allel and distributed environments [21]. Indeed, earli-
est tools specifically targeted such environments [32, 19].
Since then, many theoretical improvements have been pro-
posed for both shared-memory parallel programs [13] and
message-passing programs [14, 15]. Jockey does not yet
support deterministic replay of a distributed system—it can
only replay processes within the system independently. As
we discuss in Section 5.2, we found this limitation not to be
a serious obstacle so far.

3 Implementation of Jockey

We have implemented Jockey in C++. Linux’s dynamic
linker (ld.so ) invokes Jockey’s initialization routine im-
mediately afterlibjockey.so is loaded, before the tar-
get program starts execution. The initialization routine per-
forms the following tasks.

(1) For each system call inlibc with timing- or context-
dependent effects, Jockey rewrites its first few in-
structions and intercepts calls to it. Jockey currently
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intercepts 80 Linux system calls, includingtime ,
recvfrom , andselect .

(2) Jockey does the same for CPU instructions with non-
deterministic effects. It currently patches onlyrdtsc ,
the x86 instruction for reading the CPU’s timestamp
counter. It is used, for example, as a pseudo random-
number generator inlibc .

(3) Jockey checkpoints the process state just before return-
ing control to the target program. In the replay mode,
Jockey simply loads the checkpoint. Checkpointing is
needed to ensure that the target sees the same set of
environment variables and command line parameters
during both record and replay.

(4) Jockey transfers control to the target program. From
this moment, Jockey becomes active only when the tar-
get executes a system call or a non-deterministic CPU
instruction. Upon intercepting one of these events,
Jockey logs the values generated by the event during
recording, and reads the value from the log during re-
play.

The next section describes the first two steps in more de-
tail. Section 3.2 discusses Jockey’s efforts to segregate itself
from the target program to avoid unnecessary interference.
Section 3.3 describes Jockey’s checkpointing mechanism
(step (3)), along with the challenges we had to overcome.
We describe our approach to reduce the event logging over-
head (step (4)) in Section 3.4.

3.1 Instruction patching

As an example, Figure 4 shows how thetime system call
is recorded and replayed. (a) shows the first few CPU in-
structions oftime in libc.so . When Jockey starts, it
writes a jmp instruction in the first 5 bytes of the proce-
dure, as shown in (b). If the 5th byte is in the middle of
another CPU instruction, as is the case withtime , Jockey
overwrites up to the next instruction boundary (and fills the
memory withnop as needed). In (c), Jockey also copies
the original first 5 bytes (6 bytes fortime ) of the function
to a newly allocated memory so that Jockey can run the old
implementation if necessary. (d) shows the entry point for
the new implementation oftime . Jockey dynamically gen-
erates this code so that it can execute on a separate stack
and avoid corrupting target memory (Section 3.2). Finally,
(e) showsnewtime , Jockey’s implementation oftime .

While recording,newtime calls the originaltime (c) and
logs the returned value. Upon replaying, it simply supplies
the value from the log without actually callingtime .

One might wonder whylibjockey.so does not just
provide a new implementation of a system call with the
same name—in fact,LD PRELOADis often used for that
purpose. The reason is that doing so will miss calls made
inside libc or the dynamic linker—for example, the call
to read via getc in Figure 1. These internal calls are pre-
resolved by the static linker (ld ), and cannot be overridden
by redefining system call functions inLD PRELOAD.

For task (2), Jockey rewrites all offending CPU instruc-
tions found in the target process. This is done in two
ways,slow mode andcached mode. In slow mode, Jockey
first reads the special file/proc/ n/maps (n is the tar-
get process ID) that shows the virtual-memory mappings
of the target process. It then reads the header of each
mapped shared object file, discovers the locations of the
text sections, and scans each text section. Jockey finds non-
deterministic CPU instructions in the section (if any), and
patches them. Jockey also intercepts invocations ofmmap
system call and does the same.

Jockey needs to parse CPU instructions during steps (1)
and (2), not a trivial task given x86’s complex instruction
encoding. It uses a pidgin table-based parser for common
instructions and consultslibdisasm [8], an open-source x86
disassembler library, for uncommon cases. A few tables
that map opcodes/operands to their instruction length let us
quickly parse more than 80% of all instruction occurrences.

Even using this technique, however, parsing all CPU in-
structions in a typical Linux program takes about 350 mil-
liseconds on a 1.5GHz Pentium-M processor, which may
be too slow for some users. To reduce the startup la-
tency further, Jockey also employs cached-mode instruc-
tion patching. Here, after finishing the slow mode, Jockey
writes the locations of non-deterministic instructions found
for each shared object in filẽ/.jockey-sig . When
Jockey starts the next time, it just reads˜/.jockey-sig
without scanning the process’s virtual memory, unless the
timestamp of the object file has changed.

Jockey’s instruction-patching approach is simpler and
faster than full-program binary translation, employed by
ATOM [27] or Valgrind [24]—as we show in Section 5,
the Jockey’s performance overhead is negligible for CPU-
intensive programs.
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time: 

0:   mov %ebx, %edx

2:   mov 8(%esp), %ecx

6:   mov 4(%esp), %ebx

10:   mov $0x4e, $ebx

15:   call *%gs:0x10

...

time_t newtime(time_t *p) {

time_t tmp;

if (replaying) {

logrecord *r = read_log();

tmp = r->tv;

} else {

oldtime(&tmp);

logrecord r = {&tmp};

append_log(&r);

}

if (p) *p = tmp;

return tmp;

}

time: 

0:   jmp trampoline

5:   nop

6:   mov 4(%esp), %ebx

10:   mov $0x4e, $ebx

15:   call *%gs:0x10

...

oldtime: 

0:   mov %ebx, %edx

2:   mov 8(%esp), %ecx

6:   jmp time+6

Rewrite first 6 bytes

C
opy first 6 bytes(a) Original entry sequence for time 

system call.

(b) Rewritten time.

(c) Newly generated entry point 

for the original implementation.

(e)  Jockey’s implementation of time.

trampoline: 

switch the stack pointer.

copy args from the old to

the new stack.
call newtime

switch stack back.

ret

(d) The trampoline code 
generated for the new time.

Figure 4: Recording and replaying time .

3.2 Segregating resource usage

Jockey and the target application run as part of the same
process and share all resources. Jockey must segregate
the use of resources to prevent Jockey from unnecessarily
changing the target’s behavior, and to minimize the chance
of a misbehaving target program breaking Jockey. This
section discusses Jockey’s treatment of three types of re-
sources: heap, stack, and file descriptors.

Heap: Jockey cannot use standard libc functions, such as
malloc or sbrk , to manage its internal data. Doing so
increases the likelihood of a misbehaving target program
breaking Jockey. Moreover, it changes the memory layout
of the target process between record and replay. It would
thus become impossible to replay invalid memory accesses
correctly—e.g., accessingfree ’ed memory, which is one
of the common programming errors.

Instead, Jockey stores all its internal data in a fixed
mmaped virtual address (0x63000000) that is unlikely to be
accessed accidentally by the target program. Jockey uses
an internal malloc-like library to carve the memory out to
individual data structures and builds a custom C++ STL
memory allocator on top of it. Thus, the Jockey code has
full access to STL features, including hash tables and dy-
namic vectors. This design has simplified the development
of Jockey considerably.

One restriction is that Jockey cannot make internal calls

to libc functions that usemalloc . Examples include high-
level I/O functions (fopen , std::fstream ) and DNS
resolvers (gethostbyname ).

Stack: Jockey also segregates the use of stack. This is
necessary to replay a program that improperly accesses data
beyond the stack pointer (e.g., accessing an on-stack array
with a negative index). Figure 4 (d) illustrates how this is
done. In the first few instructions after it intercepts the call
to time , Jockey saves the stack pointer in an internal vari-
able, switches the stack to an internal buffer, copies the pa-
rameters totime (a 4-byte pointer) from the old to the new
stack, and callsnewtime . Once the new implementation
returns, Jockey restores the stack pointer. This allows for
deterministic replay of even a program that abuses the stack,
because Jockey never uses the target’s stack.

This stack-switching code must run without touching any
CPU register other than the stack pointer. Thus, all the data
structures involved here are allocated statically. This makes
Jockey non-reentrant, but it is not an issue because Jockey
does not support multi-threading.

File descriptors: Jockey must do its own file accesses oc-
casionally, for example, when opening a log file or dumping
checkpoints. Because Jockey and the target process share
the same file-descriptor table, Jockey must ensure that its
file operations do not alter the descriptor allocation scheme
seen by the target. For this purpose, Jockey moves file de-
scriptors it internally opens to a fixed range not likely to be
used accidentally by the target (430∼439).

Gdb (debugger) poses another problem. When starting
the target process, gdb opens a few extra file descriptors in
addition to the usual stdin, stdout, and stderr. Thus, if ex-
ecution is recorded under a normal shell and then replayed
under gdb, the files opened by the target processes will be
assigned different descriptors, which makes replaying di-
vergent.1 We solve this problem by having Jockey open
dummy files for descriptors 0 to 9 before starting the tar-
get program (descriptors inherited from the parent process
are left untouched). Assuming that gdb opens at most 10
descriptors when it starts the target, we can ensure that the
target has the same set of files open upon record and replay.

1In fact, this problem is not just specific to gdb. It happens whenever
the target process inherits more than the standard number of file descriptors
from the parent.
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% jockey --checkpointfrequency=30 \
--retaincheckpoints=5 \
-- httpd -X

... later ...
% jockey --restore=.jockeylog/checkpoint-3 httpd

Figure 5: Taking automatic httpd (Apache) checkpoints every
30 seconds. The -X option runs Apache in foreground. The
--retaincheckpoints=5 option causes only the last five check-
points to be retained. The last line replays httpd from the third
checkpoint.

3.3 Checkpointing

Jockey allows process state to be checkpointed automati-
cally. Figure 5 shows an example. Checkpointing serves
two purposes. First, it allows the developer to time-travel
through the history of execution quickly. Second, it bounds
log-space consumption, because log records older than the
oldest checkpoint can be deleted from disk.

Following the technique pioneered by libckpt [20] and
flashback [26], Jockey first forks the target process. It then
dumps the state of the child, while letting the parent con-
tinue running. Jockey reads the/proc/ n/maps (n is the
process ID) to obtain the virtual memory mappings of the
process and dumps only those sections that are mapped pri-
vately and read-write. To restore a checkpoint, for each
section recorded in the checkpoint file, Jockey unmaps the
memory region if it is already occupied, and either restores
the contents from the checkpoint file or remaps the file.

We discuss two particular problems we faced, both re-
lated to dynamic linking.

Preventing brain damage to the dynamic linker One
of the challenges of checkpoint restoration is that Jockey
needs to overwrite the memory that is potentially used by
the restoration code itself. Jockey would crash if restoration
is done naively. Here, two types of memory regions need to
be taken care of: Jockey’s internal heap (Section 3.2) and
the heap used by the dynamic linker. For example, Jockey
must execute theread system call to load checkpoint con-
tents. If the call toread happens to be the first ever made
by the target application or Jockey, then the dynamic linker
is invoked to resolve the symbol “read ”, which involves
modifying the linker’s heap.

Jockey handles its internal heap by excluding it from
checkpointing, but the dynamic linker poses a particular
challenge—we cannot know a priori where the memory
used by the dynamic linker is (the linker performs an anony-

mous mmap of its heap memory; all anonymous-mmaped
sections look the same to Jockey). We handle this by ea-
gerly linking all libc functions used by Jockey, by making
dummy calls to functions such asopen andread , before
it restores any checkpoint. After restoration, the dynamic
linker’s heap reverts back to the state during recording.

Exec shield Exec-shield is a facility found in some Linux
kernels (e.g., Red Hat, Fedora Core) to thwart buffer-
overflow attacks [12]. One of its features is randomization
of the loading addresses of shared-object files. This feature
breaks Jockey because Jockey needs to keep data structures
that are specific to the process’s memory layout. We cur-
rently demand that this feature be disabled by doing the be-
low on machine boot.

echo 0 >/proc/sys/kernel/exec-shield

3.4 Reducing logging overhead

Jockey employs two types of logging policies, depending on
the types of system calls, to reduce the log-space overhead.

• For requests to regular files or directories, Jockey per-
forms “undo” logging [9]. That is, for system calls that
update a regular file or directory, Jockey logs enough
information to restore its contentsbefore the modifica-
tion. For example, when awrite system call over-
writes the mid-section of a file, Jockey logs the offset
and the old contents of the section. Or, whenwrite
appends to the end of the file, Jockey just logs the old
size of the file. In the replay mode, Jockey scans the
log from the end to the beginning and restores the file
contents. Read-only system calls (e.g.,read ) to regu-
lar files are simply executed directly.

• For all other types of events—I/Os to sockets, pipes, or
select , time , or rdtsc —Jockey performs “redo”
logging. Jockey logs the value produced by the event
during recording, as illustrated in Figure 4 (e). Dur-
ing replay, Jockey reads the value from the log without
executing the actual system call.

System calls such asread andwrite can operate on
both types of files. We intercept calls to functions that cre-
ate file descriptors—e.g.,open , socket , andaccept —
remember the type of each descriptor, and dispatch based
on the descriptor type. File descriptors inherited from the
parent process (e.g., stdin) are always redo-logged.
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Various studies have shown that majority of I/Os to regu-
lar files are reads, and that most of the write traffic is actu-
ally appends [18, 29]. For these common cases, our design
allows Jockey to only log the type and the offset of the re-
quests, not the actual contents. Thus, it drastically reduces
the logging overhead for I/O system calls for regular files.

The downside of the undo-based logging is that the user
cannot modify the files accessed by the target program be-
tween record and replay. So far, we have found this not to
be a significant burden.

3.5 Handling signals

Signals, especially those that happen asynchronously (e.g.,
SIGALRM, SIGINT), present a special challenge. We han-
dle them in a way similar to [28]. Each signal delivery is
first intercepted by Jockey. Jockey’s signal handler simply
records the parameters to the signal (signal number and the
CPU register values) and finishes. At the end of the Jockey’s
handler for a system call orrdtsc CPU instruction, Jockey
checks if a signal was intercepted in the past. If so, it logs
the signal (so that it can be replayed) and calls the target-
defined signal handler. This way, Jockey converts asyn-
chronous signals to synchronous upcalls that only happen
immediately after a system call.

This technique may distort program behavior when the
target program runs without issuing a system call (or execut-
ing non-deterministic CPU instructions) for a long period
and receives signals in the meantime. However, Jockey’s
primary targets, I/O-oriented programs, usually do not suf-
fer from this problem.

3.6 Handling memory-mapped I/Os

Updates to memory mapped files are handled using MMU
protection mechanisms. Jockey intercepts calls tommap
and mprotect . For each file requested to be mapped
read&write in a shared mode (i.e.,MAPSHARED),2 Jockey
makes the mapped region read-only, and takes a page fault
(SIGSEGVsignal) after the first write access to each page in
the region. In theSIGSEGVhandler, Jockey logs the cur-
rent page contents (Section 3.4), makes the page writable,
and returns the control to the target.

These memory pages are made read-only again just be-
fore checkpointing, so that Jockey can restore the contents

2Accesses to a private mapping (MAPPRIVATE) need not be inter-
cepted, because private mapping is essentially a heap memory with partic-
ular initial contents.

of the file at the moment of each checkpoint.

4 Controlling Jockey

Jockey is designed to replay executions without requiring
modification to the target source code. Sometimes, how-
ever, allowing the target program to change the behavior of
Jockey would enable more efficient program execution or
debugging. Jockey’s library-based design makes it easy to
offer such control knobs for the target. This section intro-
duces some of them.

jockey set fork trace mode(mode): By default,
uponfork , Jockey continues recording only the parent and
disables recording the child. This function can be called by
the target program to record only the child, or both.3 It can
be used, for example, for daemon-type programs that fork
to detach themselves from the parent process.

jockey redirect calls( name, newproc ,
size ) : This function is used to transfer the control to
newproc whenever functionname is called. Parametersize
is the size of the on-stack parameters to the function. This
function is implemented using instruction-patching service
discussed in Section 3.1. This feature can be used, for
example, to provide record/replay functionality for obscure
ioctl commands.

User-defined invariant checker: Jockey allows an arbi-
trary object file to be linked and run during replay. Figure 6
shows an example. Here, assume that we rantest2.c
under Jockey and found that procedurefoo behaves anom-
alously wheni == 95999 . We could diagnose the prob-
lem by setting a breakpoint onfoo in a debugger and wait-
ing until it hits 95999 times, but Jockey offers a quicker
alternative, as shown in Figure 7.

The implementation of this feature is tricky, because we
cannot use the dynamic linker to load the object file into
the target process—doing so would alter the heap structure
of the target (Section 3.3). Jockey instead uses the static
linker, ld . Jockey first discovers the addresses of all public
symbols in the target process, including those exported by
Jockey, by invokingnm for each shared object file loaded
by the target. Jockey then invokesld , passes the symbols’

3The behavior offork can also be controlled viaJOCKEYRCenviron-
ment variable.
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// test2.c
void foo(int i) {

... do something complex ...
}
void main() {

for (int i = 0; i < 100000; i++) foo(i);
}

// checker.c
#include <jockey/jockey.h>
void foocheck(int i) {

if (i == 95999)
jockey_breakpoint();

}
void init() {

jockey_interpose_calls("bar", foocheck, 4);
}

Figure 6: test2.c is the target program. checker.c shows
a user-defined checker that calls a breakpoint after bar is called
95999 times. Function init is called by Jockey when the checker
is loaded into memory. jockey interpose calls is similar to
jockey redirect calls , but it returns the control to to the tar-
get program after the callback returns. jockey breakpoint is
just a no-op.

% cc -c checker.c
% gdb test2
(gdb) b jockey_breakpoint
(gdb) run --jockey=replay=1;\
checker=checker.o

Figure 7: Running the user-defined checker. Procedure
foochecker in checker.c will be called before every time bar
executes.

addresses, and instructsld to resolve the symbols in the
checker object at a fixed virtual address unlikely to be ac-
cessed by the target program (0x62000000). Jockey then
reads the produced binary directly into memory and exe-
cutes it.

5 Evaluation

This section reports performance and space overheads of
Jockey and discusses our experiences applying Jockey to
real-world programs.

5.1 Performance and log-space overheads

The evaluation was performed on a Fedora Core 3 Linux
machine with a 1.5GHz Pentium-M CPU, 512MB of mem-

Name
Run time Log size

Native Record Replay #bytes #records
g++ 1.33 1.51 1.49 73KB 80
xclock N/A 180 0.4 80KB 4639
Emacs N/A 210 5.81 1.4MB 20769
httpd 16.7 17.5 9.5 2.0MB 140180
FAB 33.7 44.1 31.1 34MB 887000

Table 1: The performance and log-space overheads of Jockey.
Run times are in seconds. “Native” is the run-time without Jockey.
“Record” and “Replay” show the runtime during recording and re-
playing, respectively.

ory, and a 7200 rpm ATA disk drive. We ran a variety of
programs under Jockey, as listed below. Stock binary exe-
cutable files from the Fedora Core distribution were used,
except for FAB.

g++ gcc 3.4.2 compiling a small C++ program that uses
an STLmap. The result shows the sum of the fron-
tend (g++), backend (cc1plus ), assembler (as ), and
linker (ld ).

xclock a digital clock for the X window system with a
screen update every second.

Emacs Emacs 21.3 running a program-development ses-
sion, involving active typing, file reading, and saving.

httpd Apache 2.0.52 (single process, no forking), serving
100,000 HTTP GET requests for a static 0.5KB file.

FAB A four-process FAB cluster [23] serving 80000 ran-
dom 1KB read and write requests.

g++ is an example of a short-running, CPU-intensive pro-
gram, which is not Jockey’s primary target. This example
still shows that Jockey has a far lower overhead compared to
approaches that involve memory-access logging [16], which
could produce a few megabytes per second of logs. For g++,
most of the slowdown is due to checkpointing that happens
at the beginning of the execution (Section 3).

Xclock and Emacs are examples of interactive applica-
tions. Jockey exhibits reasonable log-space overheads for
them. Jockey is able to replay their execution extremely
quickly, because they need not wait for timeouts or user in-
puts during replay. This translates to more efficient debug-
ging sessions.

Apache and FAB are examples of server programs. FAB
represents the worst case for Jockey. Not only does FAB
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perform large amount of network I/Os, it also overwrites ex-
isting files (devices) repeatedly, resulting in a large amount
of logging traffic (Section 3.4). In comparison, Apache has
a far lower overhead because it only performs read-only ac-
cesses to HTML files and appends to access-log files.

5.2 Experiences

We have used Jockey regularly for FAB development. Our
experiences have overall been positive. Jockey has been
most useful when diagnosing bugs that happen during long
regression tests. Before Jockey, we were forced to recom-
pile and reboot the system many times, each time with a
slightly different set of “printf” statements, hoping that we
would eventually reproduce and catch the error. Jockey
allows us to reproduce the bug reliably as often as we
wish. Fixing such bugs, however, is still difficult even with
Jockey. The real cause of the bug often happens minutes be-
fore the bug exhibits, often on a different machine. The de-
veloper needs to replay the execution of multiple processes
repeatedly to locate the cause.

Jockey has also been surprisingly effective in diagnosing
bugs that exhibit quickly, e.g., while processing the first re-
quest from the client (indeed, most real-world bugs are of
this type). Jockey cuts the debugging turn-around time by
allowing the developer to replay a single process quickly
instead of restarting the entire cluster.

Our experiences so far suggest that deterministic
distributed-system replay (Section 2.2) is not worth the
complexity, at least for systems like FAB. The most im-
portant feature of a record&replay tool is the ability to re-
play quickly and reduce developers’ turn-around time. The
whole-system replay does not improve on this issue; it may
indeed increase the replay latency.

There are a few Jockey features that sound useful in the-
ory, but have turned out to be not quite so in practice. First
is user-defined invariant checking (Section 4). Debugging is
an ad-hoc activity—writing and compiling a program every
time one wants to debug is awkward. A debugger sup-
port, such as transparently compiling and loading a user-
defined watchpoint, would help. Another problem is that
the checker can only do only limited things—for example,
it cannot intercept calls in the middle of function execution,
nor can it inspect on-stack variables in the call chain.

Second, the concept of “time travel” using periodic auto-
matic checkpoints (Section 3.3) has turned out to be power-
ful but somewhat cumbersome. The developer must manu-
ally restart the process every time he or she wants to switch

to a different checkpoint. The developer can easily lose
track of which part of the execution he or she is replaying.
An extension to debuggers, such as automatic checkpoint
scanning for detecting invariant violation [5, 31], would go
a long way toward make this feature truly useful.

6 Conclusion

This paper described Jockey, a Linux tool for determinis-
tic record/replay debugging. To achieve Jockey’s goals of
safety and easy of use, it is implemented as a user-space li-
brary that runs as a part of the target process. It intercepts
calls to non-deterministic system calls and CPU instruc-
tions, logs the effects of these operations during recording,
and replays them from the log during replay. Jockey has
a small performance and log-space overhead. Jockey has
been extensively used to develop FAB.
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