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bugs may rash a prodution system, making serviesunavailable. Moreover, \silent" bugs that run unde-teted may orrupt valuable information. Aording tothe National Institute of Standards and Tehnology [48℄,software bugs ost the U.S. eonomy an estimated $59.5billion annually, approximately 0.6% of the gross domes-ti produt! Given the magnitude of this problem, thedevelopment of e�etive debugging tools is imperative.Software debugging has been the fous of muh re-searh. Popular avenues of suh researh inlude dete-tion and analysis of data raes [7, 23, 46, 63, 68, 69, 74℄,stati ompiler-based tehniques to detet potentialbugs [20, 24, 31, 36, 64, 76℄ possibly aided by statiheking of user-direted rules [19, 27, 81℄, run-timeheking of data types to detet some lasses of memory-related bugs [41, 49℄, and more extensive run-time heksto detet more omplex program errors [28, 51℄. Thesestudies have proposed e�etive solutions to statially ordynamially detet ertain types of software bugs.Even though previous solutions have shown promisingresults, most software bugs still rely on programmers tointeratively debug using tools suh as gdb. Interativedebugging an be a very hallenging task beause somebugs our only after hours or even days of exeution.Some of them our only with a partiular ombinationof user input and/or hardware on�gurations. More-over, some bugs, suh as data raes, are partiularlyhard to �nd beause they only our with a partiularinterleaved sequene of timing-related events.These problems motivate the need for low-overheaddebugging support that allows programmers to rollbakto a previous exeution point and re-exeute the buggyode region. A deterministi replay rereates the preiseonditions that lead to the bug and helps to understandthe auses of the bug. In most debugging tools today, ifan error ours, the program needs to be restarted fromthe very beginning and may take hours or even daysto reah the buggy state. If the bug is time-related, thebug may not our during re-exeution. It would be veryuseful if an interative debugger suh as gdb an period-ially hekpoint the proess state of the debugged pro-gram during its dynami exeution. If an error ours,the programmer an request gdb to rollbak to a previ-



ous state and then deterministially replay the programfrom this state so that the programmer an see how thebug manifests in order to ath its root ause.Though system support for rollbak and replay hasbeen studied in the past, most previous approahes aretoo heavy-weight to support software debugging. Themain reason is that these approahes are geared towardsurviving hardware or operating system failures. There-fore, most of these systems hekpoint program stateto seondary storage suh as disk, remote memory ornon-volatile memory [3, 10, 12, 34, 37, 38, 39, 54, 61,77, 79, 82℄. Correspondingly, these systems inur farhigher overhead than is neessary or permissible to sup-port software debugging. Unlike hardware/OS failures,we only need to rollbak and replay a program when itrashes due to software bugs. Moreover, most previoussystems annot a�ord frequent hekpointing beause ofthe high overheads involved in these approahes. As aresult, appliations may have to roll bak to a point inthe distant past (e.g., 1-2 hours ago).Besides hekpointing systems, other work on roll-bak support { suh as transation support for main-memory data strutures [11, 29, 40, 43, 60, 62℄, systemreovery [9, 42, 65, 72℄ or logging and replay of systemevents [6, 33, 50, 66, 70℄ { either have problems similar toprevious hekpointing systems or require appliationsto be rollbak-aware. These limitations hinder the ef-fetiveness of these solutions for software debugging ofgeneral programs.In this paper, we present a lightweight OS extensionalled Flashbak that provides rollbak and determin-isti replay support for software debugging. In orderto eÆiently apture the in-memory state of an exeut-ing proess, Flashbak uses shadow proesses to repliatea program's exeution state. Moreover, Flashbak alsoaptures the interations between a program and therest of the system { suh as system alls, signals, andmemory mapped regions { to allow for subsequent de-terministi re-exeution. We have developed a prototypeof our proposed solution in the Linux operating systemthat implements a subset of the features. Our experi-mental results with miro-benhmarks and real applia-tions show that our system adds little overhead and anquikly roll bak to a previous exeution point.As an example of how deterministi replay supportan be used for debugging, we also explore the neessaryextensions to gdb in order to provide user support forhekpointing, rollbak and deterministi replay. Theseextensions will allow programmers to roll bak a pro-gram to a previous state when something has gone awry,and interatively replay the buggy ode region. Withsuh support, the programmer does not need to restartthe exeution of the program or to worry about the re-produibility of the bug.This paper is organized as follows. Setion 2 desribesthe motivation and bakground of our work. Setion 3presents an overview of Flashbak, and setions 4 and 5desribe in greater detail our approah for rollbak of

state and deterministi replay. Setion 6 presents theexperimental results. Setion 7 disusses the modi�a-tions that have been made to gdb in order to ontrollogging, rollbak and reovery from within the debugger.Setion 8 onludes the paper with a brief disussion ofour experiene as well as plans for future work.2 Bakground and Related WorkOur work builds upon two groups of researh: systemsupport for debugging and system support for rollbak.In this setion we disuss losely related work done inthese two diretions.2.1 System Support for DebuggingSoftware debugging has been the subjet of substantialresearh and development. Existing approahes mainlyinlude ompile-time stati heking, run-time dynamiheking and hardware support for debugging. Somerepresentative ompile-time stati hekers were pro-posed by Wagner [75, 76℄, Lujan [44℄ Evans [21℄, En-gler [19, 27, 81℄. Examples of run-time dynami hek-ers inlude Rational's Purify [30℄, KAI's Assure [35℄,Lam et. al.'s DIDUCE [28, 51℄ and several oth-ers [41, 49, 15, 53, 58, 63℄. Reently, several hardwarearhiteture tehniques have been proposed to detetbugs [26, 1, 14, 47, 56℄.While these ompile-time, run-time or hardware teh-niques are very useful in athing ertain types of bugs,many bugs still ause the programmer to rely on inter-ative debuggers suh as gdb. To haraterize timing-related bugs suh as rae onditions, simply rerunningthe program with the same input may not reprodue thesame bug. Moreover, some bugs may appear only afterrunning the program for several hours, making the de-bugging proess a formidable task. To understand and�nd root auses of suh bugs, it is very useful to providesystem support for reproduing the ourring bug, whihmay only appear for a partiular ombination of user in-puts and on�gurations or after a partiular interleavedsequene of time-related events.One e�etive method to reprodue a bug is to rollbak to a previous exeution state in the viinity of thebuggy ode, and deterministially replay the exeutioneither interatively inside a debugger or automatiallywith heavy instrumentation. This requires an eÆientrollbak and deterministi replay mehanism.2.2 System Support for RollbakRollbak apability is provided in many systems in-luding hekpointing systems, main-memory transa-tion systems and software rejuvenation.Chekpointing has been studied extensively in thepast. Chekpointing enables storing the previous exe-



ution state of a system in a failure-independent loa-tion. When the system fails, the program an restartfrom the most reent hekpoint in either a di�erentmahine or the same mahine after �xing the auseof the failure. Sine most hekpointing systems as-sume that the entire system may fail, hekpoint datais stored either in disks [12, 34, 37, 38, 39, 79, 61℄, re-mote memory [3, 54, 82℄ and non-volatile or persistentmemory [10, 80℄. As a result, most hekpoint systemsinur high overhead and annot a�ord to take frequenthekpoints. They are, therefore, too heavy-weight tosupport rollbak for software debugging.Systems that provide transation support for main-memory data strutures also allow appliations to roll-bak to a previous exeution point [11, 29, 43, 60, 62℄.For example, Lowell and Chen have developed a sys-tem that provides transation support in the Rio Vistareoverable virtual memory system [11, 43℄. Most ofthese approahes require appliations to be written us-ing the transation programming model; onsequentlythey annot be onveniently used for debugging a gen-eral program.Borg et al developed a system [5℄ that provides faulttolerane by maintaining an inative bakup proess. Inthe event of a system failure, the bakup proess an takeover the exeution of a proess that rashes. The bakupproess is kept up-to-date by making available to it allthe messages that the ative proess reeived. Their im-plementation is based on the assumption that two pro-esses starting from the same initial state will performidentially upon reeiving the same input. While thisassumption holds for reovery-based systems, it is notthe ase for general software sine the state of the restof the system may have hanged in the meantime. De-terministi replay of a proess requires that it reeivethe same non-deterministi events during replays as dur-ing the original run. These events inlude responses tosystem alls, shared memory aesses, signals, networkmessages et al.Reovery-oriented omputing [25, 52℄ is a reent re-searh initiative that adopts the approah that errorsare inevitable, so support for reovering from errors isessential for developing and validating highly availablesoftware. Though this is an interesting approah to soft-ware availability, most studies in software rejuvenationso far [4, 32, 57℄ have foused on restarting the whole ap-pliation rather than �ne-grained rollbak. Crash-onlysoftware [8℄ is a reent approah to software developmentthat improves the availability of software by using om-ponent building bloks that an rash and restart quiklyinstead of aiming for fault tolerane. These studies fo-us more on minimizing mean-time-to-reovery (MTTR)than on software debugging.Feldman and Brown developed a system for programdebugging [22℄ that periodially hekpoints the mem-ory state of a proess by keeping trak of pages touhedby the proess. They propose using this system for pro-gram restart and omprehensive exeution path logging.But their mehanism involves hanges to the ompiler,

loader, standard library and the kernel. It traks allmemory aesses via ode instrumentation and therebythis approah is very heavy-weight. Further, they do notprovide deterministi replay; therefore, some errors maynot manifest themselves during subsequent re-exeution.Russinovih[59℄ suggests a lightweight approah to lognondeterministi aesses to shared memory by merelyreplaying the interleaved order of proesses sharing thememory deterministially. An appliation is instru-mented to obtain �ne-grained software instrution oun-ters and the OS has to reord the loation of on-text swithes. This tehnique an be potentially usedby FlashBak to support the replay of shared-memorymulti-proessed program.ReVirt[17℄ is a novel approah to intrusion analysisthat enapsulates appliations within a virtual OS thatitself runs as a proess in the guest OS. This tehniquedereases the size of the trusted omputing base (TCB)and allows preise logs to be maintained by the guest OS.Flashbak is signi�antly di�erent from ReVirt. First,debugging support needs to hekpoint appliation stateon timesales(minutes) that are several orders of magni-tude smaller than in ReVirt(days). Seond, unlike Re-Virt whih has to ontend with maliious intruders bylogging "everything", Flashbak need only log hangesthat are made by the appliation being debugged andexternal events that a�et its operation.The onstraints with existing system support for roll-bak motivate the need for a new lightweight, �ne-grained rollbak and deterministi replay solution speif-ially designed for software debugging.3 Overview of FlashbakFlashbak provides three basi primitives for debugging,Chekpoint(), Disard(x) and Replay(x).� stateHandle = Chekpoint (): Upon this all, thesystem aptures the exeution state at the urrentpoint. A state handle is returned so that the pro-gram an later use it for rollbak.� Disard (stateHandle): Upon this all, the ap-tured exeution state spei�ed by stateHandle isdisarded. The program an no longer roll bakto this state.� Replay (stateHandle): Upon this all, the proessis rolled bak to the previous exeution state spei-�ed by stateHandle and the exeution is determin-istially replayed until it reahes the point whereReplay() is alled.To provide the above primitives, Flashbak usesshadow proesses to eÆiently apture the in-memoryexeution state of a proess at the spei�ed exeutionpoint. The main idea of shadow proess is to fork a newproess at the spei�ed exeution point and this new pro-ess maintains the opy of the proess's exeution state



in main memory. One a shadow proess is reated, itis suspended immediately. If rollbak is requested, thesystem kills the urrent ative proess and reates a newative proess from the shadow proess that apturedthe spei�ed exeution state. Sine Flashbak does notattempt to reover from system rashes or hardware fail-ure, there is no need to store the shadow proess ontodisk or other persistent storage. This redues the over-head of the hekpoint proess signi�antly. Moreover,opy-on-write is used to further redue the overhead.While our method of hekpointing allows the in-memory state of a proess to be reinstated, the proessmay not see the same set of open �le desriptors or net-work onnetions during re-exeution. Even if the stateof �le desriptors an be reprodued, it is still a umber-some task to restore the ontents of the �le to the orig-inal state, and to ensure that network onnetions willrespond exatly as in the original exeution. Similarly,during replay it may be undesirable to let the proessa�et the external environment again by, say, deleting�les or modifying their ontent.In order to support deterministi replay of a rolledbak proess, we adopt an approah wherein we reordall interations that the exeuting proess has with theenvironment. During replay, the logged information isused to ensure that the re-exeution appears \idential"to the original run. When a hekpoint is initiated us-ing the hekpoint primitive, in addition to apturingin-memory exeution state, the system also reords theinterations between the proess and its environment.During replay, the previously olleted information isused to give the proess the impression that the exter-nal environment is responding exatly as it did duringthe original exeution, and that it is a�eting the envi-ronment in the same way.Shadow proesses an be used in onjuntion with thedeterministi replay mehanism either within a debug-ging environment like gdb, or through expliit alls madeby the program being debugged:� Interative debugging: One possible usage senariois where the debugging platform an periodiallyapture the state of an exeuting proess by invok-ing hekpoint (similar to the insertion of break-points in gdb, for instane). If an error ours, theprogrammer an then instrut the debugger to rollbak exeution to a previously aptured state byspeifying the time of the earlier hekpoint.� Expliit hekpointing and rollbak: An alternateusage senario is that the programmer takes on-trol of when hekpoints are taken in the ode.Figure 1 shows an example of a program wherethe programmer has inserted expliit invoations tohekpoint, replay and disard primitives.Automati hekpoint/rollbak support inside aninterative debugger is onvenient and requires nohanges to the program soure ode. On the other

Figure 1: Code for a proess augmented with primitiveshand, giving the programmer expliit ontrol on hek-points/rollbaks enables more intelligent and meaningfulhekpoint generation.Figure 1 shows a program in whih the programmeralls hekpoint in line 1. If the read operation in line6 fails, the programmer an roll bak to the exeutionstate aptured at line 1. To help haraterize the bug,the exeution from line 1 to line 6 an be replayed de-terministially by attahing an interative debugger orswithing to a pro�ling mode with extensive instrumen-tation. If line 6 sueeds, the hekpoint is disarded.4 Rollbak Using Shadow Proesses4.1 The Main IdeaFlashbak reates hekpoints of a proess by repliat-ing the in-memory representation of the proess in theoperating system. This snapshot of a proess, knownas the shadow proess, is suspended immediately afterreation and is stored within the proess struture. Ashadow proess represents the passive state of the exe-uting proess at a previous point, and an be used tounwind the exeution of the proess by replaing the newexeution state with the shadow state and ommeningexeution in the normal fashion. If a shadow state is notneeded anymore, the proess an disard it.The reation of a shadow proess for a running pro-ess, an event we refer to as state-apture, is ahievedby reating a new shadow proess struture in the ker-nel, and initializing this struture with the ontents ofthe original proess' struture. The state informationaptured inludes proess memory (stak, heap), reg-isters, �le desriptor tables, signal handlers and otherin-memory state assoiated with a proess. A pointerto this shadow struture is then stored in the original
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sented in Setion 6 show that these overheads are notsigni�ant.4.2 Rolling bak multi-threaded pro-essesRollbak of a multi-threaded proess requires speial at-tention. This is beause in a multi-threaded environ-ment several omponents of the proess state are impli-itly shared aross all threads that belong to the sameproess. For example, threads implemented using thepthread pakage on Linux, share memory, �le desriptorsand signal handlers with eah other. The only thread-private states are user-spae (and kernel) staks. Suhimpliit sharing vastly ompliates rollbak beause itis no longer possible for a thread to revert to pristineversions of the shadow state without impating the exe-ution of other threads.There are two approahes to support �ne-grained roll-bak of multi-threaded programs. One is to apturethe proess state for the entire proess and roll bakall threads to a previous exeution point. The seondapproah is to trak thread dependenies suh as mem-ory read-write and �le read-write dependenies and rollbak only those threads that depend on the erroneousthread [2, 16, 18, 67, 70℄.Flashbak uses the �rst approah to support rollbakof multi-threaded programs. In other words, the under-lying system aptures the exeution state of all threadsof a proess at a hekpoint. Likewise, when a roll-bak ours, Flashbak re-instates the exeution stateof all threads by reverting bak to a pristine opy of theshared state. This enables maintenane of onsistentstate among all threads. Thread synhronization prim-itives, suh as aquiring/releasing loks and semaphoreoperations are also impliitly rolled bak.Our approah has several advantages over the alter-native for software debugging, even though rolling bakall the threads of a proess when only one of them en-ounters an error, may seem ineÆient. First, our ap-proah is simpler beause it does not require ompli-ated logi to keep trak of thread dependenies. Trak-ing thread dependenies is very diÆult beause onur-rent aesses to shared memory are not handled throughsoftware or some speialized ahe oherene ontroller.Traking dependenies requires either hardware supportor instrumentation of appliation binary ode to notifythe operating system about data sharing. The logi totrak dependenies adds overheads to the error-free ex-eution and is also error-prone. Seond, to haraterizethread synhronization or data raes, it might be moreinformative to roll bak all threads and deterministiallyre-exeute all threads step-by-step interatively. Fur-thermore, the ineÆieny of rolling bak all threads isenountered only when faults our - the less ommonase, while dependeny traking, if done dynamiallywould lead to overhead on the ommon ase.



4.3 Implementation in LinuxWe have modi�ed the Linux 2.4.22 kernel by addingthree new system alls { hekpoint(), disard() andreplay() to support rollbak and replay. The kernelhandles these funtions as desribed earlier. The over-head of these system alls on normal proess exeutionis an important onsideration in our implementation.To apture shadow state, we reate a new proess on-trol blok (task strut in Linux terminology) and ini-tialize it with a opy of the alling proess's own stru-ture. This opy involves reation of opy-on-write mapsover the entire proess memory via the reation of newmm strut, �le strut and signal strut. The registerontents of the urrent exeution ontext when it waslast in user-spae are opied onto the new ontrol blokand �nally the kernel stak of the new ontrol blokis initialized by hand suh that the shadow proess,when exeuted, ontinues exeution by returning fromthe hekpoint system all with a di�erent return value.The state apture proedure is di�erent from the forkoperation in several ways. The primary di�erene is thatafter a fork operation, the newly reated proess is visi-ble to the rest of the system. For instane, the moduleount is inremented to reet the fat that the hildproess is also sharing the same modules. The newlyreated proess is added to the sheduler's run lists andis ready to be sheduled. In ontrast, a shadow proessis reated only for maintaining state. It is not visibleto the rest of the system and does not partiipate insheduling.After apturing a shadow state, the alling proessreturns from the system all and ontinues exeution asnormal, with the shadow image in tow. Any hangesmade to the state after the hekpoint leave the shadowimage in its pristine state.A all to the disard() system all deletes a proess'sshadow image and releases all resoures held by it. Thereplay() system all, on the other hand, drops the re-soures of the urrent image, and overwrites the pro-ess ontrol blok with the previously aptured shadowimage. Sine the memory map of the urrent proesshanges during the all, the page tables orrespondingto the new mm strut are loaded by a all to swith mm.A subtle result of reinstating the shadow image is thatthe replay() system all never returns to the aller. Assoon as the shadow beomes ative for the aller, thereturn address for the replay() all is lost (it was partof the speulative state), being replaed instead withthe return address of the hekpoint() all that orre-sponds to the state that the proess is rolling bak to.When we implemented rollbak support for multi-threaded programs in Linux, we enountered many hal-lenges beause of the design of Linux thread pakagethat our implementation is based on: pthreads. In thisthread pakage, there is a one-to-one mapping betweenuser-spae and kernel-spae threads, i.e. eah user-spaethread has an exeutable proess ounterpart inside the

kernel. State sharing is ahieved by using the lone sys-tem all to reate lightweight proesses that share aessto memory, �le desriptors and signal handlers amongother things. POSIX ompliane, with respet to deliv-ery of signals (and other requisites), is ensured by reat-ing an LWP thread manager that is the parent of all thethreads (LWP's) assoiated with a proess. While theone-to-one mapping allows the thread library to om-pletely ignore the issue of sheduling between threads atuser-spae, it presents several ompliations for rollbak.Reall that when one thread attempts to proess ahekpoint event, we need to apture the state of all theother threads of that proess. Sine every user-spaethread is mapped to a kernel thread, the other threadsmay be exeuting system alls or ould be bloked in-side the kernel waiting for asynhronous events (sleep-SIGALRM, disk IO et.). Capturing the transient stateof suh threads ould easily lead to state inonsistenyupon rollbaks, suh as rolling bak to a sleeping statewhen the orresponding kernel timer has already ex-pired1. It is diÆult to apture the state of an exeutionontext from within a di�erent exeution ontext.We are urrently exploring a solution to this prob-lem by expliitly identifying suh troublesome senariosand manipulating the user-spae and kernel staks toensure that the interrupted system all is re-exeutedupon rollbak. Spei�ally, threads that are bloked insystem alls are hekpointed as if they are about tobegin exeution of this interrupted system all.Notie that apparently simple solutions that irum-vent this problem suh as using inter-proess ommuni-ation or expliit barrier synhronization prior to stateapture are not appliable. In the former ase, IPCmehanisms suh as signals and pipes inrease the la-teny of the state apture event beause their proessingis usually deferred, and is often not deterministi. Bar-rier synhronization on the other hand, would ause theproessing of a state apture event to be delayed untilthe event is generated on all the threads of a proess,whih might be unrealisti in ertain appliations.5 Replay Using Reord-and-Sandbox5.1 The Main IdeaIn order to deterministially replay the exeution of aproess from a previous exeution state, we need to en-sure during re-exeution that the proess pereives nodi�erene in its interation with the environment. Forinstane, if the proess did a read on a �le and reeiveda partiular array of bytes, during replay, the proessshould reeive the same array of bytes and return valueas before, though the �le's ontents may have alreadybeen hanged.1sleep on Linux is implemented using nanosleep whihswaps out the proess after adding a timer onto the kernel'stimer list



Flashbak does not ensure exatly the same exeu-tion during replay as during the original run. Instead,Flashbak provides only an impression to the debuggedproess that the exeution and interation with the en-vironment appears idential to those during the originalrun. It is diÆult to provide the exat same exeutionbeause the external environment, suh as network on-netions or devie states, et, is beyond the ontrol of theoperating system. As long as Flashbak interats withthe debugged proess in the same way, with very highprobability, the bug an be reprodued during replay.A proess in Flashbak an operate in one of twomodes - log and replay. In the log mode the systemlogs all interations of the proess with the environ-ment. These interations an happen through systemall invoations, memory-mapping, shared memory inmulti-threaded proesses, and signals. The proess en-ters the log mode when the hekpoint primitive is in-voked. In the replay mode, the kernel handles systeminterations of the proess by alling funtions that sim-ulate the e�et of the original system all invoation.The replay mode is seleted when the replay primitiveis invoked. In this mode, Flashbak ensures the inter-ation between the replayed proess and the OS is thesame as was logged during the original run.5.2 System allsLogging and replay are di�erent for di�erent types ofsystem alls:� Filesystem-related { Calls suh as open, lose, read,write, seek� Virtual memory-related, suh as memory alloa-tion, mmap et.� Network-related { suh as soket reation, polling,send, rev et.� Proess ontrol { suh as exe, fork, exit, wait� Interproess ommuniation-related { suh as re-ation and manipulation of message queues andnamed pipes� Utility funtions { suh as getting the time of dayWhen simulating the e�et of a system all, Flash-bak has to ensure that the values returned by the sys-tem all are idential to those returned during the origi-nal exeution. In addition, the original system all mayreturn some \hidden" values by modifying memory re-gions pointed to by pointer arguments. For example,the read() system all loads the data from the �le sys-tem into the bu�er spei�ed by one of the parameters.These side e�ets also need to be aptured by Flash-bak. A faithful replay of a system all thus requiresFlashbak to log all return values as well as side-e�ets.While somewhat tedious beause of the speial attention

required by eah system all to handling its spei� ar-guments, this support an easily be provided for a largebody of system alls.In Flashbak, we interept system alls invoked by aproess during its exeution. In order to do this, wereplae the default handler for eah system all witha funtion that does the atual logging and replay asshown in �gure 3. In logging mode, the funtion invokesthe original all and then logs the return values as wellas the side-e�ets. In replay mode, the funtion heksto on�rm that the same all is being made again, andthen makes the same side-e�ets and returns the loggedreturn value.
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Figure 3: Hijaking System Calls for Logging and Replay inFlashbakA notable exeption to bypassing the atual systemalls during replay is for alls related to memory manage-ment, suh as memory mapping and heap management.In this situation we annot fake memory alloation {if the proess aesses a memory loation that we havefaked the alloation of, then it will result in a segmenta-tion fault. This problem arises beause while memory isalloated and dealloated using the brk() system all,it may be aessed through diret variable assignments.The hanges made to memory loations do not make anypermanent hanges to the system; i.e. the state is ap-tured by a proess' hekpoint exlusively. As we disussshortly, however, this may not be the ase for �les thathave been mapped into memory.One system alls have been handled, muh of the pro-ess' original exeution an be replayed. For instane,the proess being replayed an read data from �les as itdid before even though these �les may atually have beenmodi�ed or may not even exist in the system anymore.Similarly, it will reeive network pakets as it originallydid from remote mahines. As far as the proess is on-erned, it believes that these events are happening asthey did before in terms of both atual data exhangedand the relative timing of asynhronous events.



5.3 Memory-Mapped Files and SharedMemoryLinux supports two di�erent avors of shared memoryfor interproess ommuniation { System V IPC andBSD mmap. These implementations allow proesses toshare a single hunk of memory by mapping the sharedmemory onto their respetive memory spaes. BSDmmap allows proesses to map a previously opened �leinto a region of its memory, after whih it an aessthe �le using simple memory assignment instrutions.When a shared segment is requested, the kernel foresthe memory management unit (MMU) to generate apage fault every time a previously unused setion of thismemory region is aessed. In response to the page fault,the kernel loads one page of data from the �le and readsit into the proess' memory.A �le may be mapped as either private or shared. Anyhanges made to privately mapped �les are visible onlyto that proess and do not result in hanges to the �le.On the other hand, �les that are mapped as shared maybe modi�ed when the proess writes to the memory area.Further, for shared �les, hanges made to the �le by aproesses will be immediately visible to other proessesthat have mapped the same region of the �le. Providingreplay for shared memory poses problems as a proessan aess shared memory without making any systemalls, making it harder to trak hanges to the sharedmemory and fake them later.One simple solution for handling memory-mapped�les is to make opies of pages that are returned uponthe �rst page fault to a memory region mapped to a�le. During replay of requests to reate memory maps,the memory areas are mapped to dummy �les, and pagefaults are handled by returning saved opies of pages.Due to the lazy demand-paging approah used by Linux,only those pages that are aessed during exeution needto be opied, thus drastially reduing the overhead.This approah will not work when the same region ofthe �le is mapped as a shared region by multiple pro-esses, eah of whih make hanges to the region. Thisapproah works for �les that have been mapped as pri-vate, as well as shared mappings where all hanges tothe �le are made by the proess being debugged.Handling shared �le-mappings with multiple proesseswriting to the �le is a more ompliated problem, andrequires the kernel to fore a page fault for every aessto the shared region by the proess being replayed in-stead of just the �rst aess as in the earlier ase. Apossible enhanement to the logging solution would beto set the aess rights of a given page to the last proessto aess it, and thus only fault when another proesshas aessed the page sine this one. This way, severalsuessive reads or updates will only su�er one ostlyexeption instead of many. During replay, however, itwould still be required to fault for eah aess sine theother proesses might not be around any more to maketheir hanges.

In Flashbak, urrently, we have implemented the sim-ple solution desribed earlier. In spite of the enhane-ment proposed for shared �le-maps with multiple writ-ers, we believe that an eÆient solution to address thishallenge will require support from the underlying arhi-teture. Shared memory an be dealt with using similarmehanisms.5.4 Multithreaded appliationsWhile the tehniques outlined above work for applia-tions with a single thread of ontrol, replaying multi-threaded appliations poses additional hallenges. Log-ging hanges made by a multithreaded appliation in-volves logging the hanges of eah thread of the de-bugged proess. During replay, the interleaving ofshared memory aesses and events has to be onsistentwith the original sequene.Ensuring that the multiple threads are sheduled inthe same relative order during replay is another issue.For multi-threaded appliations running on a single pro-essor system, we propose adopting the approah de-sribed in [13℄ for deterministi replay. The basi ideais to reord information about the sheduling of thethreads during the original exeution and use this in-formation during replay to fore the same interleavingbetween thread exeutions. Sine this implementationwould also be in the kernel, the physial thread shed-ule is transparent and an be used in lieu of the logi-al thread shedule information proposed by [13℄. Wewill implement this in the future in the tool, possiblywith the support of arhiteture-level mehanisms suhas those desribed in [55℄.5.5 SignalsSignals are used to notify a proess about a spei�event, or to fore the proess to exeute a speial han-dling ode when an event is deteted during its exeu-tion. Signals may be sent to a proess either by anotherproess or by the kernel itself. Signals are asynhronousand are delivered proatively to a proess by the kernel.They may be delivered at any time to a proess. Signalspresent a hallenge for deterministi replay beause sig-nals are asynhronous events that a�et the exeution ofa proess. The replaying mehanism has to ensure thatsignals are delivered at exatly the same points duringre-exeution as in the original exeution.Deterministi reprodution of signals may be handledusing the approah proposed by Slye and Elnozahy [66℄,though Flashbak does not urrently support signal re-play. The mehanism outlined in their work makes use ofan instrution ounter to reord the time between asyn-hronous events. The instrution ounter is inluded inmost modern proessor systems today. When a signalours, the system reates a log entry for it, whih in-ludes the value of the instrution ounter sine the lastsystem all invoation. During replay, Flashbak heks



to see if the next log entry orresponds to a signal. If so,then it initializes the instrution ounter with the timefrom the urrent system all till the signal. When a trapis generated beause of timeout, the kernel delivers thesignal to the proess.5.6 Implementation in LinuxWe have implemented a prototype of Flashbak's replaymehanism in Linux-2.4.22. The prototype handles re-play of system alls as well as memory-mapped �les toa limited extent. In Linux, a user-spae proess invokesa system all by loading the system all number intothe eax register and optional arguments in other reg-isters, and then raising a programmed exeption withvetor 128. The handler for this exeption, the systemall handler, does several heks and then runs the fun-tion indexed in the sys all table array by the systemall number. It �nally returns the results got from thisation to the user proess.We used sysalltrak [71℄, an open-soure tool thatallows system alls to be interepted for various purposessuh as logging and bloking. The ore of the tool hasbeen implemented in a kernel module whih \hijaks"the system all table by replaing the default handlersfor some system alls with speial funtions. Systemall invoations an be �ltered based on several riteriasuh as the proess id of the invoking proess as wellas values for spei� arguments. System alls that needto be logged are handled in a number of ways. At oneextreme, the speial funtion may log the invoation ofthe system all and let the all go through to the originalhandler, while at the other it may blok the system allinvoation and return a failure to the user proess. Theatual behavior of the speial funtion is ontrolled usingrules that may be loaded into the kernel.In our implementation, we added a new ation typethat the speial funtion an perform, namely theAT REPLAY ation for replaying. This ation veri�es thatthe system all invoation mathes a all that the pro-ess originally made, then sets the return value aordingto the logged invoation and also makes the same sidee�ets on the arguments as before. By doing this, it by-passes the atual system all handler for some systemalls and overrides its behavior with that of the simulat-ing funtion. For other system alls suh as the brk all,Flashbak allows the system alls to be handled by theoriginal system all handler sine memory alloationsneed to be made even during replay.6 EvaluationWe evaluate our prototype implementation of Flashbakusing mirobenhmarks as well as real appliations. Thetiming data we present were obtained on a 1.8GHz Pen-tium IV mahine with 512KB of L2 ahe and 512MBof RAM.

6.1 Overhead of State{CaptureTo perform a very basi performane evaluationof the rollbak apabilities, we instrumented thehekpoint(), disard() and replay() system alls.We then ran a small program that repeatedly invokeshekpoint(), does some simple updates and then ei-ther disards the hekpoint by alling disard() orrolling bak by alling replay().Figure 4(a) presents the time for the three basi op-erations: hekpoint, disard and replay. A hekpointtakes around 25-1600�s as the amount of state updatesbetween two onseutive hekpoints varied from 4KBto 400MB. Sine reation of a shadow proess involvesreation of a opy-on-write map, the ost is proportionalto the size of the memory oupied by the proess. Sim-ilarly, the ost to disard or replay a shadow is propor-tional to the size of memory modi�ed by the proess.The osts of disard (replay) are also diretly pro-portional to the number of pages in the orrespondinghekpointed state (the urrent state). This is beauseboth disard and replay involve deletion of one opy-on-write map. Our results show that disard and re-play take around 28-2800�s when the entire memoryis read, and between 28-7500�s when the entire datamemory is written. The higher osts in the latter aseare beause the kernel has to return a large number ofpage frames to its free memory list when the shadowstate is dropped/reinstated. Typial appliations will ofourse not modify all pages in their address spae be-tween hekpoints, and so the osts of the disard andreplay operations will be loser to the lower end of therange shown in Figure 4(b).An important objetive of our rollbak infrastru-ture is to have minimal impat on normal applia-tion performane. We therefore onsider the data forhekpoint() and disard() more important thanthat for replay(). This is beause the latter is invokedonly when errors our, and will therefore not be partof ommon-ase behavior. Regardless, the overhead im-posed by the rollbak all is as low as that for shadowstate release. This is promising sine it indiates we anrestore exeution state as fast as ommon ase hek-point disard.6.2 Overhead due to LoggingIn order to evaluate the logging overhead, we wrote asimple test program that employs two threads in orderto isolate the impat of the logging overhead. In theprogram, the parent thread forks and reates a hild. Itthen loads the rules for logging into the framework andnoti�es the hild to begin invoking system alls. Therules allow the kernel to �lter system all invoationsbased on the proess ID of the hild.While logging system alls that have side e�ets onmemory regions, suh as read, stat and getsokopt,Flashbak also needs to reord the ontents of the bu�er
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(a) Bu�er-opying (BC) (b) No-opying (NC)Figure 5: Response time overhead (miroseonds) for varying number of system all invoationsor struture. Thus, with regard to logging overhead,there are two groups of system alls, those that auseside e�ets on some memory regions, and those thatsimply return a value after performing the intended a-tion. We refer to the �rst lass of system alls as bu�er-opying (BC) and the seond group as no-opying (NC).For NC system alls, there is no need to reord the on-tents of bu�ers; just the system all ID and the returnvalues will suÆe.To study the overhead on every system all due to hi-jaking and logging, we invoked the read and write sys-tem alls several times, gradually inreasing the numberof invoations. In eah invoation, the number of bytesread or written is 4 KB. For eah run, we start with alean �le ahe in order to make the e�et of ahingon system all overheads onsistent. Figures 5 showsthe overhead imposed by the sandbox mehanism. Theoverhead due to sandboxing ours beause of the extraindiretion of system alls imposed by Flashbak. In-stead of being handled diretly by the system all han-dlers, system all requests need to pass through �ltersand the logging mehanism. The inrease in overheadis linear with the number of system alls for both thesystem alls. The di�erene in slope between the twolines on the graphs represents the extra per-system-alloverhead imposed due to logging. This is around 30 mi-roseonds on an average.To evaluate the e�et that the opying of bu�ers hason the logging overheads, we invoked the read and write

system alls repeatedly, gradually inreasing the num-ber of bytes read or written from 4 KB to 2 MB. Theatual number of system alls is small in this ase. Fig-ure 6 shows the overhead while varying the amount ofdata read or written. The overhead for BC and NC sys-tem alls is omparable, and the extra opying of bu�ersdoes not appear to impose any extra overhead. This isbeause the ontents of the log are bu�ered, and writ-ten to disk asynhronously. In these experiments, thedisk ahe was warmed sine all the data for the �leswas prefethed before the atual exeution. The valuestherefore reet reads and writes entirely involving theahe only.
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(a) Bu�er-opying (BC) (b) No-opying (NC)Figure 6: Response time overhead (miroseonds) for varying sizes of memory loggingBC and NC alls. As expeted, the growth in the sizeof the log �le is linear in terms of the number of systemalls, though the slope is greater for BC sine more datais written eah time.6.3 Appliation ResultsIn order to test our implementation of state-apture ina realisti environment, we measure the performanewith the well-known Apahe web-server. We evaluatethe system overhead for both multiproess version andmultithread version of Apahe. Our evaluation serves todemonstrate two things: �rst, that �ne-grained rollbaksupport is possible, and an be applied to real appli-ations; and seond, that the performane impat onommon-ase exeution is minimal.In all the experiments reported herein, the web serveris bottle-neked by the network and is serving data atfull network throughput of 100Mbps. We use these ex-periments to show that o�-the-shelf mahines(1.8MHz,512MB RAM) have enough spare pu yles to provide�ne-grained rollbak without a�eting lient's pereivedperformane. The server is hekpointed multiple times(typially thrie) during the proessing of eah request.We essentially reate a hekpoint just before readingthe HTTP request o� a newly aepted soket, beforeproessing a valid HTTP request from an existing on-netion and before writing out the HTTP response ontothe soket. Thus, at any point of time, Flashbak main-tains as many shadow images as the total number ofrequests being proessed by the server. All data pointsin this setion have been averaged over three runs.The Apahe server an be on�gured to run in a mul-tiproess or multithread mode. In the former, Apahemaintains a pool of worker proesses to servie requests.Eah worker proess is a single thread and the number ofworkers in the pool is adapted dynamially based on loadestimates. However, in the latter, Apahe uses a muhsmaller pool of worker proesses, with eah worker pro-ess onsisting of multiple threads implemented by thepthread pakage. We present here performane �guresfor both on�gurations of the Apahe server. In thisexperiment, the web server hekpoints its state uponthe arrival of request for a page, proesses the request,

and disards the hekpoint. These results reet theoverhead of apturing state. Sine Flashbak urrentlydoes not support replay of multithreaded exeution andshared memory, we disabled logging for replay duringthese experiments.To exerise the web server, we use an http request-generating lient appliation, WebStone [73℄, whihsends bak-to-bak requests to a single web server. Eahrequest onstitutes a feth of a single �le, randomly se-leted from a pre-de�ned \working set". The working setomprised �les of sizes varying between 5KB and 5MB,but the majority of requests onstituted a feth of 5KB.The request generating appliation forks a pre-de�nednumber of lient proesses, eah of whih submits a se-ries of random requests to the web server. The serverwas run on a o�-the-shelf 1.8GHz Pentium IV mahine,onneted to the lient via a 100Mbps LAN. Perfor-mane was measured in terms of throughput, aggregateresponse time and load on the server CPU. In all theexperiments reported here, the server was operating atthe full network throughput of 100Mbps.We ompare the Apahe web-server on the prototypesystem with a baseline system running the original ver-sion of Linux. Figure 8 shows throughput and responsetime in Flashbak and the baseline system with Apaherunning in multiproess mode. It is lear from thegraphs that there is no signi�ant di�erene between thelient-pereived throughput and response time. Whenthe number of lients is small, Flashbak has 10% lowerthroughput, even though the average response time isthe same as the baseline system. However, when thenumber of lients inreases, the di�erene between base-line and Flashbak disappears. In some ases, Flash-bak performs even better than the baseline system. Weonsider these small di�erenes well within expeted ex-perimental variane, and onlude that the impat ofrollbak support on Apahe performane is negligible.Figure 9 shows the results for the multithread ver-sion of Apahe. As expeted, the overheads imposed byFlashbak on multithreaded exeution are slightly lowerthan those for the multiproess version, evidened bythe throughput �gures whih more losely math oneanother in most ases. This lower overhead is a diretresult of fewer e�etive system alls, beause when one
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tially aptures the amount of time eah proess spendson the run queue. Figure 10 plots these results for themultiproess and multithread versions. The graphs ex-pose the overhead in apturing shadow state, whih inour evaluation ours very frequently (one every requestreeived by the server). Note that even though the puutilization of the server inreases by 2-4 times, the lientpereived performane, in both data bytes delivered andtime to respond, remains unhanged. We assert that theexperimental setup is realisti as modern web-servers areoften onstrained by network bandwidth and have sparepu yles.In both the multiproess and multithread on�gura-tions, CPU load inreases signi�antly. In the single-



threaded ase, the extra load is quite high. This is be-ause a multiproess Apahe webserver uses a olletionof separate Unix proesses to handle web requests, eahof whih now aptures shadow state when handling arequest. In the multithreaded version, the state-aptureevent ours one for all threads of exeution, beausewe apture the state of all threads, en masse, eah time ahekpoint is taken. The smaller number of system alls,and the smaller size of the state aptured (per workerthread), together ontribute to the multithread on�gu-ration exhibiting better CPU load than the multiproesson�guration.7 Using Flashbak in gdbUsing Flashbak, it is fairly straightforward to inorpo-rate support for hekpointing, rollbak and determinis-ti replay into a debugging utility suh as gdb.We have modi�ed gdb to support three new om-mands { hekpoint, rollbak, and disard, for reatinghekpoints, to support rollbak and deterministi re-play of debugged programs. Programmers an set upbreakpoints at plaes where they might want to reatehekpoints. At these breakpoints, after seeing the stateof the program, they an hoose to reate a new hek-point by using the hekpoint ommand. They an alsodisard earlier hekpoints, thereby freeing system re-soures assoiated with those hekpoints by using thedisard ommand. If they �nd the system state to beinonsistent, they an roll bak to an earlier hekpointby using the rollbak ommand.Using Flashbak, gdb an be made to automatiallytake periodi hekpoints of the state of the proess be-ing exeuting. New ommands are added into the de-bugger user interfae to allow programmers to enable ordisable automati hekpointing during exeution of thedebugged program. Programmers also have ontrol overthe frequeny of hekpointing. This frees the program-mer from having to insert breakpoints at appropriateloations in the ode and expliitly taking hekpoints.In order to inorporate hekpoints into gdb, we madehanges to the target system handling omponent andthe user interfae omponents. The target system han-dling omponent handles the basi operations dealingwith the atual exeution ontrol of the program, stakframe analysis and physial target manipulation. Thisomponent handles software breakpoint requests by re-plaing a program exeution with a trap. During ex-eution, the trap auses an exeption whih gives on-trol to gdb. The user an hoose to take a hekpointat this time. gdb does this by making a hekpointsystem all passing the proess ID of the proess beingdebugged. Similarly, for rollbak and replay, gdb usesthe rollbak and replay system alls respetively.For automati hekpointing, in addition to thesehanges, gdb maintains a timer that keeps trak of timesine the last hekpoint. The timeout for the timer anbe set by the user. When a timeout ours, gdb hek-

points the proess.8 Conlusions and Future WorkIn this paper we presented a lightweight OS extensionalled Flashbak to support �ne-grained rollbak and de-terministi replay for the purpose of software debugging.Flashbak uses shadow proess to eÆiently apture in-memory states of a proess at di�erent exeution points.To support deterministi reply, Flashbak logs all inter-ations of the debugged program with the exeution en-vironment. Results from our prototype implementationon real systems show that our approah has small over-heads and an roll bak programs quikly.Besides software debugging, our system an also beused to improve software availability by progressivelyrolling bak and re-exeuting to avoid transient er-rors [78℄. In addition, our approah an be extendedto provide lightweight transation models that requireonly atomiity but not persistene.We are in the proess of ombining Flashbak withhardware arhiteture support for rollbak and deter-ministi replay [56℄ to further redue overhead. Weare also evaluating Flashbak with more appliations.Flashbak urrently only works for programs that runon a single mahine. We are exploring ways to extend itto support distributed lient-server appliations by om-bining with tehniques surveyed by Elnozahy et al. [18℄.Flashbak inluding the pathes to both Linux andgdb will be released to the open soure ommunity sothat other researhers/developers an take advantage ofFlashbak in interative debugging.9 AknowledgmentsWe would like to thank Dr Srinivasan Seshan, the shep-ard for the paper, for useful suggestions and omments.We also thank the anonymous reviewers for useful feed-bak, and the Opera group for useful disussions, and Ja-gadeesan Sundaresan, Pierre Salverda and Arijit Ghoshfor their ontribution to the projet.REFERENCES[1℄ S. V. Adve, M. D. Hill, B. P. Miller, and R. H. B. Netzer. De-teting Data Raes onWeak Memory Systems. In Proeedingsof the 18th Annual International Symposium on ComputerArhiteture, pages 234{243, 1991.[2℄ Alvisi and Marzullo. Trade-o�s in implementing ausal mes-sage logging protools. In PODC: 15th ACM SIGACT-SIGOPS Symposium on Priniples of Distributed Comput-ing, 1996.[3℄ C. Amza, A. Cox, and W. Zwaenepoel. Data repliationstrategies for fault tolerane and availability on ommoditylusters. Pro. of the International Conferene on DependableSystems and Networks., 2000.[4℄ A. Bobbio and M. Sereno. Fine grained software rejuvenationmodels. In IEEE International Computer Performane andDependability Symposium, 1998.
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