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ant impa
t on systemavailability. Unfortunately, �nding software bugs is avery 
hallenging task be
ause many bugs are hard to re-produ
e. While debugging a program, it would be veryuseful to rollba
k a 
rashed program to a previous exe
u-tion point and deterministi
ally re-exe
ute the \buggy"
ode region. However, most previous work on rollba
kand replay support was designed to survive hardware oroperating system failures, and is therefore too heavy-weight for the �ne-grained rollba
k and replay neededfor software debugging.This paper presents Flashba
k, a lightweight OS ex-tension that provides �ne-grained rollba
k and replay tohelp debug software. Flashba
k uses shadow pro
essesto eÆ
iently roll ba
k in-memory state of a pro
ess, andlogs a pro
ess' intera
tions with the system to supportdeterministi
 replay. Both shadow pro
esses and loggingof system 
alls are implemented in a lightweight fashionspe
i�
ally designed for the purpose of software debug-ging.We have implemented a prototype of Flashba
k inthe Linux operating system. Our experimental resultswith mi
ro-ben
hmarks and real appli
ations show thatFlashba
k adds little overhead and 
an qui
kly roll ba
ka debugged program to a previous exe
ution point anddeterministi
ally replay from that point.1 Introdu
tionAs rapid advan
es in 
omputing hardware have led todramati
 improvements in 
omputer performan
e, issuesof reliability, maintainability, and 
ost of ownership arebe
oming in
reasingly important. Unfortunately, soft-ware bugs are as frequent as ever, a

ounting for asmu
h as 40% of 
omputer system failures [45℄. Software�This work was supported in part by NSF under grantsCCR-0325603, EIA-0072102, and CHE-0121357; by DARPAunder grant F30602-01-C-0078; by an IBM SUR grant; andby additional gifts from IBM and Intel.

bugs may 
rash a produ
tion system, making servi
esunavailable. Moreover, \silent" bugs that run unde-te
ted may 
orrupt valuable information. A

ording tothe National Institute of Standards and Te
hnology [48℄,software bugs 
ost the U.S. e
onomy an estimated $59.5billion annually, approximately 0.6% of the gross domes-ti
 produ
t! Given the magnitude of this problem, thedevelopment of e�e
tive debugging tools is imperative.Software debugging has been the fo
us of mu
h re-sear
h. Popular avenues of su
h resear
h in
lude dete
-tion and analysis of data ra
es [7, 23, 46, 63, 68, 69, 74℄,stati
 
ompiler-based te
hniques to dete
t potentialbugs [20, 24, 31, 36, 64, 76℄ possibly aided by stati

he
king of user-dire
ted rules [19, 27, 81℄, run-time
he
king of data types to dete
t some 
lasses of memory-related bugs [41, 49℄, and more extensive run-time 
he
ksto dete
t more 
omplex program errors [28, 51℄. Thesestudies have proposed e�e
tive solutions to stati
ally ordynami
ally dete
t 
ertain types of software bugs.Even though previous solutions have shown promisingresults, most software bugs still rely on programmers tointera
tively debug using tools su
h as gdb. Intera
tivedebugging 
an be a very 
hallenging task be
ause somebugs o

ur only after hours or even days of exe
ution.Some of them o

ur only with a parti
ular 
ombinationof user input and/or hardware 
on�gurations. More-over, some bugs, su
h as data ra
es, are parti
ularlyhard to �nd be
ause they only o

ur with a parti
ularinterleaved sequen
e of timing-related events.These problems motivate the need for low-overheaddebugging support that allows programmers to rollba
kto a previous exe
ution point and re-exe
ute the buggy
ode region. A deterministi
 replay re
reates the pre
ise
onditions that lead to the bug and helps to understandthe 
auses of the bug. In most debugging tools today, ifan error o

urs, the program needs to be restarted fromthe very beginning and may take hours or even daysto rea
h the buggy state. If the bug is time-related, thebug may not o

ur during re-exe
ution. It would be veryuseful if an intera
tive debugger su
h as gdb 
an period-i
ally 
he
kpoint the pro
ess state of the debugged pro-gram during its dynami
 exe
ution. If an error o

urs,the programmer 
an request gdb to rollba
k to a previ-



ous state and then deterministi
ally replay the programfrom this state so that the programmer 
an see how thebug manifests in order to 
at
h its root 
ause.Though system support for rollba
k and replay hasbeen studied in the past, most previous approa
hes aretoo heavy-weight to support software debugging. Themain reason is that these approa
hes are geared towardsurviving hardware or operating system failures. There-fore, most of these systems 
he
kpoint program stateto se
ondary storage su
h as disk, remote memory ornon-volatile memory [3, 10, 12, 34, 37, 38, 39, 54, 61,77, 79, 82℄. Correspondingly, these systems in
ur farhigher overhead than is ne
essary or permissible to sup-port software debugging. Unlike hardware/OS failures,we only need to rollba
k and replay a program when it
rashes due to software bugs. Moreover, most previoussystems 
annot a�ord frequent 
he
kpointing be
ause ofthe high overheads involved in these approa
hes. As aresult, appli
ations may have to roll ba
k to a point inthe distant past (e.g., 1-2 hours ago).Besides 
he
kpointing systems, other work on roll-ba
k support { su
h as transa
tion support for main-memory data stru
tures [11, 29, 40, 43, 60, 62℄, systemre
overy [9, 42, 65, 72℄ or logging and replay of systemevents [6, 33, 50, 66, 70℄ { either have problems similar toprevious 
he
kpointing systems or require appli
ationsto be rollba
k-aware. These limitations hinder the ef-fe
tiveness of these solutions for software debugging ofgeneral programs.In this paper, we present a lightweight OS extension
alled Flashba
k that provides rollba
k and determin-isti
 replay support for software debugging. In orderto eÆ
iently 
apture the in-memory state of an exe
ut-ing pro
ess, Flashba
k uses shadow pro
esses to repli
atea program's exe
ution state. Moreover, Flashba
k also
aptures the intera
tions between a program and therest of the system { su
h as system 
alls, signals, andmemory mapped regions { to allow for subsequent de-terministi
 re-exe
ution. We have developed a prototypeof our proposed solution in the Linux operating systemthat implements a subset of the features. Our experi-mental results with mi
ro-ben
hmarks and real appli
a-tions show that our system adds little overhead and 
anqui
kly roll ba
k to a previous exe
ution point.As an example of how deterministi
 replay support
an be used for debugging, we also explore the ne
essaryextensions to gdb in order to provide user support for
he
kpointing, rollba
k and deterministi
 replay. Theseextensions will allow programmers to roll ba
k a pro-gram to a previous state when something has gone awry,and intera
tively replay the buggy 
ode region. Withsu
h support, the programmer does not need to restartthe exe
ution of the program or to worry about the re-produ
ibility of the bug.This paper is organized as follows. Se
tion 2 des
ribesthe motivation and ba
kground of our work. Se
tion 3presents an overview of Flashba
k, and se
tions 4 and 5des
ribe in greater detail our approa
h for rollba
k of

state and deterministi
 replay. Se
tion 6 presents theexperimental results. Se
tion 7 dis
usses the modi�
a-tions that have been made to gdb in order to 
ontrollogging, rollba
k and re
overy from within the debugger.Se
tion 8 
on
ludes the paper with a brief dis
ussion ofour experien
e as well as plans for future work.2 Ba
kground and Related WorkOur work builds upon two groups of resear
h: systemsupport for debugging and system support for rollba
k.In this se
tion we dis
uss 
losely related work done inthese two dire
tions.2.1 System Support for DebuggingSoftware debugging has been the subje
t of substantialresear
h and development. Existing approa
hes mainlyin
lude 
ompile-time stati
 
he
king, run-time dynami

he
king and hardware support for debugging. Somerepresentative 
ompile-time stati
 
he
kers were pro-posed by Wagner [75, 76℄, Lujan [44℄ Evans [21℄, En-gler [19, 27, 81℄. Examples of run-time dynami
 
he
k-ers in
lude Rational's Purify [30℄, KAI's Assure [35℄,Lam et. al.'s DIDUCE [28, 51℄ and several oth-ers [41, 49, 15, 53, 58, 63℄. Re
ently, several hardwarear
hite
ture te
hniques have been proposed to dete
tbugs [26, 1, 14, 47, 56℄.While these 
ompile-time, run-time or hardware te
h-niques are very useful in 
at
hing 
ertain types of bugs,many bugs still 
ause the programmer to rely on inter-a
tive debuggers su
h as gdb. To 
hara
terize timing-related bugs su
h as ra
e 
onditions, simply rerunningthe program with the same input may not reprodu
e thesame bug. Moreover, some bugs may appear only afterrunning the program for several hours, making the de-bugging pro
ess a formidable task. To understand and�nd root 
auses of su
h bugs, it is very useful to providesystem support for reprodu
ing the o

urring bug, whi
hmay only appear for a parti
ular 
ombination of user in-puts and 
on�gurations or after a parti
ular interleavedsequen
e of time-related events.One e�e
tive method to reprodu
e a bug is to rollba
k to a previous exe
ution state in the vi
inity of thebuggy 
ode, and deterministi
ally replay the exe
utioneither intera
tively inside a debugger or automati
allywith heavy instrumentation. This requires an eÆ
ientrollba
k and deterministi
 replay me
hanism.2.2 System Support for Rollba
kRollba
k 
apability is provided in many systems in-
luding 
he
kpointing systems, main-memory transa
-tion systems and software rejuvenation.Che
kpointing has been studied extensively in thepast. Che
kpointing enables storing the previous exe-




ution state of a system in a failure-independent lo
a-tion. When the system fails, the program 
an restartfrom the most re
ent 
he
kpoint in either a di�erentma
hine or the same ma
hine after �xing the 
auseof the failure. Sin
e most 
he
kpointing systems as-sume that the entire system may fail, 
he
kpoint datais stored either in disks [12, 34, 37, 38, 39, 79, 61℄, re-mote memory [3, 54, 82℄ and non-volatile or persistentmemory [10, 80℄. As a result, most 
he
kpoint systemsin
ur high overhead and 
annot a�ord to take frequent
he
kpoints. They are, therefore, too heavy-weight tosupport rollba
k for software debugging.Systems that provide transa
tion support for main-memory data stru
tures also allow appli
ations to roll-ba
k to a previous exe
ution point [11, 29, 43, 60, 62℄.For example, Lowell and Chen have developed a sys-tem that provides transa
tion support in the Rio Vistare
overable virtual memory system [11, 43℄. Most ofthese approa
hes require appli
ations to be written us-ing the transa
tion programming model; 
onsequentlythey 
annot be 
onveniently used for debugging a gen-eral program.Borg et al developed a system [5℄ that provides faulttoleran
e by maintaining an ina
tive ba
kup pro
ess. Inthe event of a system failure, the ba
kup pro
ess 
an takeover the exe
ution of a pro
ess that 
rashes. The ba
kuppro
ess is kept up-to-date by making available to it allthe messages that the a
tive pro
ess re
eived. Their im-plementation is based on the assumption that two pro-
esses starting from the same initial state will performidenti
ally upon re
eiving the same input. While thisassumption holds for re
overy-based systems, it is notthe 
ase for general software sin
e the state of the restof the system may have 
hanged in the meantime. De-terministi
 replay of a pro
ess requires that it re
eivethe same non-deterministi
 events during replays as dur-ing the original run. These events in
lude responses tosystem 
alls, shared memory a

esses, signals, networkmessages et al.Re
overy-oriented 
omputing [25, 52℄ is a re
ent re-sear
h initiative that adopts the approa
h that errorsare inevitable, so support for re
overing from errors isessential for developing and validating highly availablesoftware. Though this is an interesting approa
h to soft-ware availability, most studies in software rejuvenationso far [4, 32, 57℄ have fo
used on restarting the whole ap-pli
ation rather than �ne-grained rollba
k. Crash-onlysoftware [8℄ is a re
ent approa
h to software developmentthat improves the availability of software by using 
om-ponent building blo
ks that 
an 
rash and restart qui
klyinstead of aiming for fault toleran
e. These studies fo-
us more on minimizing mean-time-to-re
overy (MTTR)than on software debugging.Feldman and Brown developed a system for programdebugging [22℄ that periodi
ally 
he
kpoints the mem-ory state of a pro
ess by keeping tra
k of pages tou
hedby the pro
ess. They propose using this system for pro-gram restart and 
omprehensive exe
ution path logging.But their me
hanism involves 
hanges to the 
ompiler,

loader, standard library and the kernel. It tra
ks allmemory a

esses via 
ode instrumentation and therebythis approa
h is very heavy-weight. Further, they do notprovide deterministi
 replay; therefore, some errors maynot manifest themselves during subsequent re-exe
ution.Russinovi
h[59℄ suggests a lightweight approa
h to lognondeterministi
 a

esses to shared memory by merelyreplaying the interleaved order of pro
esses sharing thememory deterministi
ally. An appli
ation is instru-mented to obtain �ne-grained software instru
tion 
oun-ters and the OS has to re
ord the lo
ation of 
on-text swit
hes. This te
hnique 
an be potentially usedby FlashBa
k to support the replay of shared-memorymulti-pro
essed program.ReVirt[17℄ is a novel approa
h to intrusion analysisthat en
apsulates appli
ations within a virtual OS thatitself runs as a pro
ess in the guest OS. This te
hniquede
reases the size of the trusted 
omputing base (TCB)and allows pre
ise logs to be maintained by the guest OS.Flashba
k is signi�
antly di�erent from ReVirt. First,debugging support needs to 
he
kpoint appli
ation stateon times
ales(minutes) that are several orders of magni-tude smaller than in ReVirt(days). Se
ond, unlike Re-Virt whi
h has to 
ontend with mali
ious intruders bylogging "everything", Flashba
k need only log 
hangesthat are made by the appli
ation being debugged andexternal events that a�e
t its operation.The 
onstraints with existing system support for roll-ba
k motivate the need for a new lightweight, �ne-grained rollba
k and deterministi
 replay solution spe
if-i
ally designed for software debugging.3 Overview of Flashba
kFlashba
k provides three basi
 primitives for debugging,Che
kpoint(), Dis
ard(x) and Replay(x).� stateHandle = Che
kpoint (): Upon this 
all, thesystem 
aptures the exe
ution state at the 
urrentpoint. A state handle is returned so that the pro-gram 
an later use it for rollba
k.� Dis
ard (stateHandle): Upon this 
all, the 
ap-tured exe
ution state spe
i�ed by stateHandle isdis
arded. The program 
an no longer roll ba
kto this state.� Replay (stateHandle): Upon this 
all, the pro
essis rolled ba
k to the previous exe
ution state spe
i-�ed by stateHandle and the exe
ution is determin-isti
ally replayed until it rea
hes the point whereReplay() is 
alled.To provide the above primitives, Flashba
k usesshadow pro
esses to eÆ
iently 
apture the in-memoryexe
ution state of a pro
ess at the spe
i�ed exe
utionpoint. The main idea of shadow pro
ess is to fork a newpro
ess at the spe
i�ed exe
ution point and this new pro-
ess maintains the 
opy of the pro
ess's exe
ution state



in main memory. On
e a shadow pro
ess is 
reated, itis suspended immediately. If rollba
k is requested, thesystem kills the 
urrent a
tive pro
ess and 
reates a newa
tive pro
ess from the shadow pro
ess that 
apturedthe spe
i�ed exe
ution state. Sin
e Flashba
k does notattempt to re
over from system 
rashes or hardware fail-ure, there is no need to store the shadow pro
ess ontodisk or other persistent storage. This redu
es the over-head of the 
he
kpoint pro
ess signi�
antly. Moreover,
opy-on-write is used to further redu
e the overhead.While our method of 
he
kpointing allows the in-memory state of a pro
ess to be reinstated, the pro
essmay not see the same set of open �le des
riptors or net-work 
onne
tions during re-exe
ution. Even if the stateof �le des
riptors 
an be reprodu
ed, it is still a 
umber-some task to restore the 
ontents of the �le to the orig-inal state, and to ensure that network 
onne
tions willrespond exa
tly as in the original exe
ution. Similarly,during replay it may be undesirable to let the pro
essa�e
t the external environment again by, say, deleting�les or modifying their 
ontent.In order to support deterministi
 replay of a rolledba
k pro
ess, we adopt an approa
h wherein we re
ordall intera
tions that the exe
uting pro
ess has with theenvironment. During replay, the logged information isused to ensure that the re-exe
ution appears \identi
al"to the original run. When a 
he
kpoint is initiated us-ing the 
he
kpoint primitive, in addition to 
apturingin-memory exe
ution state, the system also re
ords theintera
tions between the pro
ess and its environment.During replay, the previously 
olle
ted information isused to give the pro
ess the impression that the exter-nal environment is responding exa
tly as it did duringthe original exe
ution, and that it is a�e
ting the envi-ronment in the same way.Shadow pro
esses 
an be used in 
onjun
tion with thedeterministi
 replay me
hanism either within a debug-ging environment like gdb, or through expli
it 
alls madeby the program being debugged:� Intera
tive debugging: One possible usage s
enariois where the debugging platform 
an periodi
ally
apture the state of an exe
uting pro
ess by invok-ing 
he
kpoint (similar to the insertion of break-points in gdb, for instan
e). If an error o

urs, theprogrammer 
an then instru
t the debugger to rollba
k exe
ution to a previously 
aptured state byspe
ifying the time of the earlier 
he
kpoint.� Expli
it 
he
kpointing and rollba
k: An alternateusage s
enario is that the programmer takes 
on-trol of when 
he
kpoints are taken in the 
ode.Figure 1 shows an example of a program wherethe programmer has inserted expli
it invo
ations to
he
kpoint, replay and dis
ard primitives.Automati
 
he
kpoint/rollba
k support inside anintera
tive debugger is 
onvenient and requires no
hanges to the program sour
e 
ode. On the other

Figure 1: Code for a pro
ess augmented with primitiveshand, giving the programmer expli
it 
ontrol on 
he
k-points/rollba
ks enables more intelligent and meaningful
he
kpoint generation.Figure 1 shows a program in whi
h the programmer
alls 
he
kpoint in line 1. If the read operation in line6 fails, the programmer 
an roll ba
k to the exe
utionstate 
aptured at line 1. To help 
hara
terize the bug,the exe
ution from line 1 to line 6 
an be replayed de-terministi
ally by atta
hing an intera
tive debugger orswit
hing to a pro�ling mode with extensive instrumen-tation. If line 6 su

eeds, the 
he
kpoint is dis
arded.4 Rollba
k Using Shadow Pro
esses4.1 The Main IdeaFlashba
k 
reates 
he
kpoints of a pro
ess by repli
at-ing the in-memory representation of the pro
ess in theoperating system. This snapshot of a pro
ess, knownas the shadow pro
ess, is suspended immediately after
reation and is stored within the pro
ess stru
ture. Ashadow pro
ess represents the passive state of the exe-
uting pro
ess at a previous point, and 
an be used tounwind the exe
ution of the pro
ess by repla
ing the newexe
ution state with the shadow state and 
ommen
ingexe
ution in the normal fashion. If a shadow state is notneeded anymore, the pro
ess 
an dis
ard it.The 
reation of a shadow pro
ess for a running pro-
ess, an event we refer to as state-
apture, is a
hievedby 
reating a new shadow pro
ess stru
ture in the ker-nel, and initializing this stru
ture with the 
ontents ofthe original pro
ess' stru
ture. The state information
aptured in
ludes pro
ess memory (sta
k, heap), reg-isters, �le des
riptor tables, signal handlers and otherin-memory state asso
iated with a pro
ess. A pointerto this shadow stru
ture is then stored in the original
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t of the primitives on the state of an exe
utingpro
ess. When 
he
kpoint is invoked, the pro
ess makes a 
loneof its exe
ution state. Upon dis
ard the shadow is removed; if arollba
k o

urs, the original exe
ution state is dis
arded.pro
ess' stru
ture. The new representation of a pro
esswith its shadow pro
ess is shown in �gure 2.The 
he
kpoint, dis
ard and replay 
alls are eitherautomati
ally generated by the debugging infrastru
tureat spe
i�
 intervals, or inserted by the programmer inthe sour
e 
ode (as shown in the example in the previousse
tion). In 
ase of a dis
ard, the system dis
ards thespe
i�ed shadow state. If a 
he
kpoint is requested, thesystem 
reates a new shadow of the 
urrent state andstores it. In the 
ase of a rollba
k, the pro
ess rolls ba
kthe exe
ution state to the previously generated shadowpro
ess. Figure 2 illustrates the e�e
t of these primitiveson the state of a pro
ess.It is possible to maintain two or more shadow pro-
esses for an exe
uting pro
ess. Multiple shadowpro
esses are useful for progressive rollba
k and re-exe
ution during debugging [78℄. In some 
ases, whenan error o

urs, rolling ba
k to only the most re
ent ex-e
ution point before replay may not be enough to 
at
hthe root of the bug be
ause it 
ould have happened be-fore this exe
ution point. Therefore, it is ne
essary toroll ba
k further and deterministi
ally restart from anearlier exe
ution point. It is also possible to roll ba
kto the same shadow multiple times and 
ause additional
he
kpoints to be taken during replay.To redu
e overhead, shadow pro
ess state is main-tained using 
opy-on-write. In other words, state 
ap-ture pro
eeds through the 
reation of an in-memory
opy-on-write map of the 
urrent state. When a shadowpro
ess is 
reated, the virtual memory of the pro
ess ismarked as read-only. A �rst write to any page by thea
tive pro
ess would trigger the 
reation of a 
opy ofthe old data. This optimization has a 
ouple of bene-�ts. First, the time to 
reate a shadow is signi�
antlyredu
ed by eliminating the need t0 
opy possibly largeamounts of memory state. Se
ond, a shadow pro
esso

upies little spa
e(in memory). Third, multiple shad-ows 
reated at di�erent exe
ution points do not needto maintain dupli
ate 
opies of the state. Finally, thesigni�
ant overlap in memory pages between a shadowpro
ess and the a
tive pro
ess minimizes the impa
t onthe paging behavior of the pro
ess due to dis
ard/replayof state. However, writes onto 
opy-on-write prote
tedmemory during exe
ution of the main pro
ess does in-
ur overhead. Fortunately, our experimental results pre-

sented in Se
tion 6 show that these overheads are notsigni�
ant.4.2 Rolling ba
k multi-threaded pro-
essesRollba
k of a multi-threaded pro
ess requires spe
ial at-tention. This is be
ause in a multi-threaded environ-ment several 
omponents of the pro
ess state are impli
-itly shared a
ross all threads that belong to the samepro
ess. For example, threads implemented using thepthread pa
kage on Linux, share memory, �le des
riptorsand signal handlers with ea
h other. The only thread-private states are user-spa
e (and kernel) sta
ks. Su
himpli
it sharing vastly 
ompli
ates rollba
k be
ause itis no longer possible for a thread to revert to pristineversions of the shadow state without impa
ting the exe-
ution of other threads.There are two approa
hes to support �ne-grained roll-ba
k of multi-threaded programs. One is to 
apturethe pro
ess state for the entire pro
ess and roll ba
kall threads to a previous exe
ution point. The se
ondapproa
h is to tra
k thread dependen
ies su
h as mem-ory read-write and �le read-write dependen
ies and rollba
k only those threads that depend on the erroneousthread [2, 16, 18, 67, 70℄.Flashba
k uses the �rst approa
h to support rollba
kof multi-threaded programs. In other words, the under-lying system 
aptures the exe
ution state of all threadsof a pro
ess at a 
he
kpoint. Likewise, when a roll-ba
k o

urs, Flashba
k re-instates the exe
ution stateof all threads by reverting ba
k to a pristine 
opy of theshared state. This enables maintenan
e of 
onsistentstate among all threads. Thread syn
hronization prim-itives, su
h as a
quiring/releasing lo
ks and semaphoreoperations are also impli
itly rolled ba
k.Our approa
h has several advantages over the alter-native for software debugging, even though rolling ba
kall the threads of a pro
ess when only one of them en-
ounters an error, may seem ineÆ
ient. First, our ap-proa
h is simpler be
ause it does not require 
ompli-
ated logi
 to keep tra
k of thread dependen
ies. Tra
k-ing thread dependen
ies is very diÆ
ult be
ause 
on
ur-rent a

esses to shared memory are not handled throughsoftware or some spe
ialized 
a
he 
oheren
e 
ontroller.Tra
king dependen
ies requires either hardware supportor instrumentation of appli
ation binary 
ode to notifythe operating system about data sharing. The logi
 totra
k dependen
ies adds overheads to the error-free ex-e
ution and is also error-prone. Se
ond, to 
hara
terizethread syn
hronization or data ra
es, it might be moreinformative to roll ba
k all threads and deterministi
allyre-exe
ute all threads step-by-step intera
tively. Fur-thermore, the ineÆ
ien
y of rolling ba
k all threads isen
ountered only when faults o

ur - the less 
ommon
ase, while dependen
y tra
king, if done dynami
allywould lead to overhead on the 
ommon 
ase.



4.3 Implementation in LinuxWe have modi�ed the Linux 2.4.22 kernel by addingthree new system 
alls { 
he
kpoint(), dis
ard() andreplay() to support rollba
k and replay. The kernelhandles these fun
tions as des
ribed earlier. The over-head of these system 
alls on normal pro
ess exe
utionis an important 
onsideration in our implementation.To 
apture shadow state, we 
reate a new pro
ess 
on-trol blo
k (task stru
t in Linux terminology) and ini-tialize it with a 
opy of the 
alling pro
ess's own stru
-ture. This 
opy involves 
reation of 
opy-on-write mapsover the entire pro
ess memory via the 
reation of newmm stru
t, �le stru
t and signal stru
t. The register
ontents of the 
urrent exe
ution 
ontext when it waslast in user-spa
e are 
opied onto the new 
ontrol blo
kand �nally the kernel sta
k of the new 
ontrol blo
kis initialized by hand su
h that the shadow pro
ess,when exe
uted, 
ontinues exe
ution by returning fromthe 
he
kpoint system 
all with a di�erent return value.The state 
apture pro
edure is di�erent from the forkoperation in several ways. The primary di�eren
e is thatafter a fork operation, the newly 
reated pro
ess is visi-ble to the rest of the system. For instan
e, the module
ount is in
remented to re
e
t the fa
t that the 
hildpro
ess is also sharing the same modules. The newly
reated pro
ess is added to the s
heduler's run lists andis ready to be s
heduled. In 
ontrast, a shadow pro
essis 
reated only for maintaining state. It is not visibleto the rest of the system and does not parti
ipate ins
heduling.After 
apturing a shadow state, the 
alling pro
essreturns from the system 
all and 
ontinues exe
ution asnormal, with the shadow image in tow. Any 
hangesmade to the state after the 
he
kpoint leave the shadowimage in its pristine state.A 
all to the dis
ard() system 
all deletes a pro
ess'sshadow image and releases all resour
es held by it. Thereplay() system 
all, on the other hand, drops the re-sour
es of the 
urrent image, and overwrites the pro-
ess 
ontrol blo
k with the previously 
aptured shadowimage. Sin
e the memory map of the 
urrent pro
ess
hanges during the 
all, the page tables 
orrespondingto the new mm stru
t are loaded by a 
all to swit
h mm.A subtle result of reinstating the shadow image is thatthe replay() system 
all never returns to the 
aller. Assoon as the shadow be
omes a
tive for the 
aller, thereturn address for the replay() 
all is lost (it was partof the spe
ulative state), being repla
ed instead withthe return address of the 
he
kpoint() 
all that 
orre-sponds to the state that the pro
ess is rolling ba
k to.When we implemented rollba
k support for multi-threaded programs in Linux, we en
ountered many 
hal-lenges be
ause of the design of Linux thread pa
kagethat our implementation is based on: pthreads. In thisthread pa
kage, there is a one-to-one mapping betweenuser-spa
e and kernel-spa
e threads, i.e. ea
h user-spa
ethread has an exe
utable pro
ess 
ounterpart inside the

kernel. State sharing is a
hieved by using the 
lone sys-tem 
all to 
reate lightweight pro
esses that share a

essto memory, �le des
riptors and signal handlers amongother things. POSIX 
omplian
e, with respe
t to deliv-ery of signals (and other requisites), is ensured by 
reat-ing an LWP thread manager that is the parent of all thethreads (LWP's) asso
iated with a pro
ess. While theone-to-one mapping allows the thread library to 
om-pletely ignore the issue of s
heduling between threads atuser-spa
e, it presents several 
ompli
ations for rollba
k.Re
all that when one thread attempts to pro
ess a
he
kpoint event, we need to 
apture the state of all theother threads of that pro
ess. Sin
e every user-spa
ethread is mapped to a kernel thread, the other threadsmay be exe
uting system 
alls or 
ould be blo
ked in-side the kernel waiting for asyn
hronous events (sleep-SIGALRM, disk IO et
.). Capturing the transient stateof su
h threads 
ould easily lead to state in
onsisten
yupon rollba
ks, su
h as rolling ba
k to a sleeping statewhen the 
orresponding kernel timer has already ex-pired1. It is diÆ
ult to 
apture the state of an exe
ution
ontext from within a di�erent exe
ution 
ontext.We are 
urrently exploring a solution to this prob-lem by expli
itly identifying su
h troublesome s
enariosand manipulating the user-spa
e and kernel sta
ks toensure that the interrupted system 
all is re-exe
utedupon rollba
k. Spe
i�
ally, threads that are blo
ked insystem 
alls are 
he
kpointed as if they are about tobegin exe
ution of this interrupted system 
all.Noti
e that apparently simple solutions that 
ir
um-vent this problem su
h as using inter-pro
ess 
ommuni-
ation or expli
it barrier syn
hronization prior to state
apture are not appli
able. In the former 
ase, IPCme
hanisms su
h as signals and pipes in
rease the la-ten
y of the state 
apture event be
ause their pro
essingis usually deferred, and is often not deterministi
. Bar-rier syn
hronization on the other hand, would 
ause thepro
essing of a state 
apture event to be delayed untilthe event is generated on all the threads of a pro
ess,whi
h might be unrealisti
 in 
ertain appli
ations.5 Replay Using Re
ord-and-Sandbox5.1 The Main IdeaIn order to deterministi
ally replay the exe
ution of apro
ess from a previous exe
ution state, we need to en-sure during re-exe
ution that the pro
ess per
eives nodi�eren
e in its intera
tion with the environment. Forinstan
e, if the pro
ess did a read on a �le and re
eiveda parti
ular array of bytes, during replay, the pro
essshould re
eive the same array of bytes and return valueas before, though the �le's 
ontents may have alreadybeen 
hanged.1sleep on Linux is implemented using nanosleep whi
hswaps out the pro
ess after adding a timer onto the kernel'stimer list



Flashba
k does not ensure exa
tly the same exe
u-tion during replay as during the original run. Instead,Flashba
k provides only an impression to the debuggedpro
ess that the exe
ution and intera
tion with the en-vironment appears identi
al to those during the originalrun. It is diÆ
ult to provide the exa
t same exe
utionbe
ause the external environment, su
h as network 
on-ne
tions or devi
e states, et
, is beyond the 
ontrol of theoperating system. As long as Flashba
k intera
ts withthe debugged pro
ess in the same way, with very highprobability, the bug 
an be reprodu
ed during replay.A pro
ess in Flashba
k 
an operate in one of twomodes - log and replay. In the log mode the systemlogs all intera
tions of the pro
ess with the environ-ment. These intera
tions 
an happen through system
all invo
ations, memory-mapping, shared memory inmulti-threaded pro
esses, and signals. The pro
ess en-ters the log mode when the 
he
kpoint primitive is in-voked. In the replay mode, the kernel handles systemintera
tions of the pro
ess by 
alling fun
tions that sim-ulate the e�e
t of the original system 
all invo
ation.The replay mode is sele
ted when the replay primitiveis invoked. In this mode, Flashba
k ensures the inter-a
tion between the replayed pro
ess and the OS is thesame as was logged during the original run.5.2 System 
allsLogging and replay are di�erent for di�erent types ofsystem 
alls:� Filesystem-related { Calls su
h as open, 
lose, read,write, seek� Virtual memory-related, su
h as memory allo
a-tion, mmap et
.� Network-related { su
h as so
ket 
reation, polling,send, re
v et
.� Pro
ess 
ontrol { su
h as exe
, fork, exit, wait� Interpro
ess 
ommuni
ation-related { su
h as 
re-ation and manipulation of message queues andnamed pipes� Utility fun
tions { su
h as getting the time of dayWhen simulating the e�e
t of a system 
all, Flash-ba
k has to ensure that the values returned by the sys-tem 
all are identi
al to those returned during the origi-nal exe
ution. In addition, the original system 
all mayreturn some \hidden" values by modifying memory re-gions pointed to by pointer arguments. For example,the read() system 
all loads the data from the �le sys-tem into the bu�er spe
i�ed by one of the parameters.These side e�e
ts also need to be 
aptured by Flash-ba
k. A faithful replay of a system 
all thus requiresFlashba
k to log all return values as well as side-e�e
ts.While somewhat tedious be
ause of the spe
ial attention

required by ea
h system 
all to handling its spe
i�
 ar-guments, this support 
an easily be provided for a largebody of system 
alls.In Flashba
k, we inter
ept system 
alls invoked by apro
ess during its exe
ution. In order to do this, werepla
e the default handler for ea
h system 
all witha fun
tion that does the a
tual logging and replay asshown in �gure 3. In logging mode, the fun
tion invokesthe original 
all and then logs the return values as wellas the side-e�e
ts. In replay mode, the fun
tion 
he
ksto 
on�rm that the same 
all is being made again, andthen makes the same side-e�e
ts and returns the loggedreturn value.
Original
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Figure 3: Hija
king System Calls for Logging and Replay inFlashba
kA notable ex
eption to bypassing the a
tual system
alls during replay is for 
alls related to memory manage-ment, su
h as memory mapping and heap management.In this situation we 
annot fake memory allo
ation {if the pro
ess a

esses a memory lo
ation that we havefaked the allo
ation of, then it will result in a segmenta-tion fault. This problem arises be
ause while memory isallo
ated and deallo
ated using the brk() system 
all,it may be a

essed through dire
t variable assignments.The 
hanges made to memory lo
ations do not make anypermanent 
hanges to the system; i.e. the state is 
ap-tured by a pro
ess' 
he
kpoint ex
lusively. As we dis
ussshortly, however, this may not be the 
ase for �les thathave been mapped into memory.On
e system 
alls have been handled, mu
h of the pro-
ess' original exe
ution 
an be replayed. For instan
e,the pro
ess being replayed 
an read data from �les as itdid before even though these �les may a
tually have beenmodi�ed or may not even exist in the system anymore.Similarly, it will re
eive network pa
kets as it originallydid from remote ma
hines. As far as the pro
ess is 
on-
erned, it believes that these events are happening asthey did before in terms of both a
tual data ex
hangedand the relative timing of asyn
hronous events.



5.3 Memory-Mapped Files and SharedMemoryLinux supports two di�erent 
avors of shared memoryfor interpro
ess 
ommuni
ation { System V IPC andBSD mmap. These implementations allow pro
esses toshare a single 
hunk of memory by mapping the sharedmemory onto their respe
tive memory spa
es. BSDmmap allows pro
esses to map a previously opened �leinto a region of its memory, after whi
h it 
an a

essthe �le using simple memory assignment instru
tions.When a shared segment is requested, the kernel for
esthe memory management unit (MMU) to generate apage fault every time a previously unused se
tion of thismemory region is a

essed. In response to the page fault,the kernel loads one page of data from the �le and readsit into the pro
ess' memory.A �le may be mapped as either private or shared. Any
hanges made to privately mapped �les are visible onlyto that pro
ess and do not result in 
hanges to the �le.On the other hand, �les that are mapped as shared maybe modi�ed when the pro
ess writes to the memory area.Further, for shared �les, 
hanges made to the �le by apro
esses will be immediately visible to other pro
essesthat have mapped the same region of the �le. Providingreplay for shared memory poses problems as a pro
ess
an a

ess shared memory without making any system
alls, making it harder to tra
k 
hanges to the sharedmemory and fake them later.One simple solution for handling memory-mapped�les is to make 
opies of pages that are returned uponthe �rst page fault to a memory region mapped to a�le. During replay of requests to 
reate memory maps,the memory areas are mapped to dummy �les, and pagefaults are handled by returning saved 
opies of pages.Due to the lazy demand-paging approa
h used by Linux,only those pages that are a

essed during exe
ution needto be 
opied, thus drasti
ally redu
ing the overhead.This approa
h will not work when the same region ofthe �le is mapped as a shared region by multiple pro-
esses, ea
h of whi
h make 
hanges to the region. Thisapproa
h works for �les that have been mapped as pri-vate, as well as shared mappings where all 
hanges tothe �le are made by the pro
ess being debugged.Handling shared �le-mappings with multiple pro
esseswriting to the �le is a more 
ompli
ated problem, andrequires the kernel to for
e a page fault for every a

essto the shared region by the pro
ess being replayed in-stead of just the �rst a

ess as in the earlier 
ase. Apossible enhan
ement to the logging solution would beto set the a

ess rights of a given page to the last pro
essto a

ess it, and thus only fault when another pro
esshas a

essed the page sin
e this one. This way, severalsu

essive reads or updates will only su�er one 
ostlyex
eption instead of many. During replay, however, itwould still be required to fault for ea
h a

ess sin
e theother pro
esses might not be around any more to maketheir 
hanges.

In Flashba
k, 
urrently, we have implemented the sim-ple solution des
ribed earlier. In spite of the enhan
e-ment proposed for shared �le-maps with multiple writ-ers, we believe that an eÆ
ient solution to address this
hallenge will require support from the underlying ar
hi-te
ture. Shared memory 
an be dealt with using similarme
hanisms.5.4 Multithreaded appli
ationsWhile the te
hniques outlined above work for appli
a-tions with a single thread of 
ontrol, replaying multi-threaded appli
ations poses additional 
hallenges. Log-ging 
hanges made by a multithreaded appli
ation in-volves logging the 
hanges of ea
h thread of the de-bugged pro
ess. During replay, the interleaving ofshared memory a

esses and events has to be 
onsistentwith the original sequen
e.Ensuring that the multiple threads are s
heduled inthe same relative order during replay is another issue.For multi-threaded appli
ations running on a single pro-
essor system, we propose adopting the approa
h de-s
ribed in [13℄ for deterministi
 replay. The basi
 ideais to re
ord information about the s
heduling of thethreads during the original exe
ution and use this in-formation during replay to for
e the same interleavingbetween thread exe
utions. Sin
e this implementationwould also be in the kernel, the physi
al thread s
hed-ule is transparent and 
an be used in lieu of the logi-
al thread s
hedule information proposed by [13℄. Wewill implement this in the future in the tool, possiblywith the support of ar
hite
ture-level me
hanisms su
has those des
ribed in [55℄.5.5 SignalsSignals are used to notify a pro
ess about a spe
i�
event, or to for
e the pro
ess to exe
ute a spe
ial han-dling 
ode when an event is dete
ted during its exe
u-tion. Signals may be sent to a pro
ess either by anotherpro
ess or by the kernel itself. Signals are asyn
hronousand are delivered proa
tively to a pro
ess by the kernel.They may be delivered at any time to a pro
ess. Signalspresent a 
hallenge for deterministi
 replay be
ause sig-nals are asyn
hronous events that a�e
t the exe
ution ofa pro
ess. The replaying me
hanism has to ensure thatsignals are delivered at exa
tly the same points duringre-exe
ution as in the original exe
ution.Deterministi
 reprodu
tion of signals may be handledusing the approa
h proposed by Slye and Elnozahy [66℄,though Flashba
k does not 
urrently support signal re-play. The me
hanism outlined in their work makes use ofan instru
tion 
ounter to re
ord the time between asyn-
hronous events. The instru
tion 
ounter is in
luded inmost modern pro
essor systems today. When a signalo

urs, the system 
reates a log entry for it, whi
h in-
ludes the value of the instru
tion 
ounter sin
e the lastsystem 
all invo
ation. During replay, Flashba
k 
he
ks



to see if the next log entry 
orresponds to a signal. If so,then it initializes the instru
tion 
ounter with the timefrom the 
urrent system 
all till the signal. When a trapis generated be
ause of timeout, the kernel delivers thesignal to the pro
ess.5.6 Implementation in LinuxWe have implemented a prototype of Flashba
k's replayme
hanism in Linux-2.4.22. The prototype handles re-play of system 
alls as well as memory-mapped �les toa limited extent. In Linux, a user-spa
e pro
ess invokesa system 
all by loading the system 
all number intothe eax register and optional arguments in other reg-isters, and then raising a programmed ex
eption withve
tor 128. The handler for this ex
eption, the system
all handler, does several 
he
ks and then runs the fun
-tion indexed in the sys 
all table array by the system
all number. It �nally returns the results got from thisa
tion to the user pro
ess.We used sys
alltra
k [71℄, an open-sour
e tool thatallows system 
alls to be inter
epted for various purposessu
h as logging and blo
king. The 
ore of the tool hasbeen implemented in a kernel module whi
h \hija
ks"the system 
all table by repla
ing the default handlersfor some system 
alls with spe
ial fun
tions. System
all invo
ations 
an be �ltered based on several 
riteriasu
h as the pro
ess id of the invoking pro
ess as wellas values for spe
i�
 arguments. System 
alls that needto be logged are handled in a number of ways. At oneextreme, the spe
ial fun
tion may log the invo
ation ofthe system 
all and let the 
all go through to the originalhandler, while at the other it may blo
k the system 
allinvo
ation and return a failure to the user pro
ess. Thea
tual behavior of the spe
ial fun
tion is 
ontrolled usingrules that may be loaded into the kernel.In our implementation, we added a new a
tion typethat the spe
ial fun
tion 
an perform, namely theAT REPLAY a
tion for replaying. This a
tion veri�es thatthe system 
all invo
ation mat
hes a 
all that the pro-
ess originally made, then sets the return value a

ordingto the logged invo
ation and also makes the same sidee�e
ts on the arguments as before. By doing this, it by-passes the a
tual system 
all handler for some system
alls and overrides its behavior with that of the simulat-ing fun
tion. For other system 
alls su
h as the brk 
all,Flashba
k allows the system 
alls to be handled by theoriginal system 
all handler sin
e memory allo
ationsneed to be made even during replay.6 EvaluationWe evaluate our prototype implementation of Flashba
kusing mi
roben
hmarks as well as real appli
ations. Thetiming data we present were obtained on a 1.8GHz Pen-tium IV ma
hine with 512KB of L2 
a
he and 512MBof RAM.

6.1 Overhead of State{CaptureTo perform a very basi
 performan
e evaluationof the rollba
k 
apabilities, we instrumented the
he
kpoint(), dis
ard() and replay() system 
alls.We then ran a small program that repeatedly invokes
he
kpoint(), does some simple updates and then ei-ther dis
ards the 
he
kpoint by 
alling dis
ard() orrolling ba
k by 
alling replay().Figure 4(a) presents the time for the three basi
 op-erations: 
he
kpoint, dis
ard and replay. A 
he
kpointtakes around 25-1600�s as the amount of state updatesbetween two 
onse
utive 
he
kpoints varied from 4KBto 400MB. Sin
e 
reation of a shadow pro
ess involves
reation of a 
opy-on-write map, the 
ost is proportionalto the size of the memory o

upied by the pro
ess. Sim-ilarly, the 
ost to dis
ard or replay a shadow is propor-tional to the size of memory modi�ed by the pro
ess.The 
osts of dis
ard (replay) are also dire
tly pro-portional to the number of pages in the 
orresponding
he
kpointed state (the 
urrent state). This is be
auseboth dis
ard and replay involve deletion of one 
opy-on-write map. Our results show that dis
ard and re-play take around 28-2800�s when the entire memoryis read, and between 28-7500�s when the entire datamemory is written. The higher 
osts in the latter 
aseare be
ause the kernel has to return a large number ofpage frames to its free memory list when the shadowstate is dropped/reinstated. Typi
al appli
ations will of
ourse not modify all pages in their address spa
e be-tween 
he
kpoints, and so the 
osts of the dis
ard andreplay operations will be 
loser to the lower end of therange shown in Figure 4(b).An important obje
tive of our rollba
k infrastru
-ture is to have minimal impa
t on normal appli
a-tion performan
e. We therefore 
onsider the data for
he
kpoint() and dis
ard() more important thanthat for replay(). This is be
ause the latter is invokedonly when errors o

ur, and will therefore not be partof 
ommon-
ase behavior. Regardless, the overhead im-posed by the rollba
k 
all is as low as that for shadowstate release. This is promising sin
e it indi
ates we 
anrestore exe
ution state as fast as 
ommon 
ase 
he
k-point dis
ard.6.2 Overhead due to LoggingIn order to evaluate the logging overhead, we wrote asimple test program that employs two threads in orderto isolate the impa
t of the logging overhead. In theprogram, the parent thread forks and 
reates a 
hild. Itthen loads the rules for logging into the framework andnoti�es the 
hild to begin invoking system 
alls. Therules allow the kernel to �lter system 
all invo
ationsbased on the pro
ess ID of the 
hild.While logging system 
alls that have side e�e
ts onmemory regions, su
h as read, stat and getso
kopt,Flashba
k also needs to re
ord the 
ontents of the bu�er
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(a) Bu�er-
opying (BC) (b) No-
opying (NC)Figure 5: Response time overhead (mi
rose
onds) for varying number of system 
all invo
ationsor stru
ture. Thus, with regard to logging overhead,there are two groups of system 
alls, those that 
auseside e�e
ts on some memory regions, and those thatsimply return a value after performing the intended a
-tion. We refer to the �rst 
lass of system 
alls as bu�er-
opying (BC) and the se
ond group as no-
opying (NC).For NC system 
alls, there is no need to re
ord the 
on-tents of bu�ers; just the system 
all ID and the returnvalues will suÆ
e.To study the overhead on every system 
all due to hi-ja
king and logging, we invoked the read and write sys-tem 
alls several times, gradually in
reasing the numberof invo
ations. In ea
h invo
ation, the number of bytesread or written is 4 KB. For ea
h run, we start with a
lean �le 
a
he in order to make the e�e
t of 
a
hingon system 
all overheads 
onsistent. Figures 5 showsthe overhead imposed by the sandbox me
hanism. Theoverhead due to sandboxing o

urs be
ause of the extraindire
tion of system 
alls imposed by Flashba
k. In-stead of being handled dire
tly by the system 
all han-dlers, system 
all requests need to pass through �ltersand the logging me
hanism. The in
rease in overheadis linear with the number of system 
alls for both thesystem 
alls. The di�eren
e in slope between the twolines on the graphs represents the extra per-system-
alloverhead imposed due to logging. This is around 30 mi-
rose
onds on an average.To evaluate the e�e
t that the 
opying of bu�ers hason the logging overheads, we invoked the read and write

system 
alls repeatedly, gradually in
reasing the num-ber of bytes read or written from 4 KB to 2 MB. Thea
tual number of system 
alls is small in this 
ase. Fig-ure 6 shows the overhead while varying the amount ofdata read or written. The overhead for BC and NC sys-tem 
alls is 
omparable, and the extra 
opying of bu�ersdoes not appear to impose any extra overhead. This isbe
ause the 
ontents of the log are bu�ered, and writ-ten to disk asyn
hronously. In these experiments, thedisk 
a
he was warmed sin
e all the data for the �leswas prefet
hed before the a
tual exe
ution. The valuestherefore re
e
t reads and writes entirely involving the
a
he only.
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(a) Bu�er-
opying (BC) (b) No-
opying (NC)Figure 6: Response time overhead (mi
rose
onds) for varying sizes of memory loggingBC and NC 
alls. As expe
ted, the growth in the sizeof the log �le is linear in terms of the number of system
alls, though the slope is greater for BC sin
e more datais written ea
h time.6.3 Appli
ation ResultsIn order to test our implementation of state-
apture ina realisti
 environment, we measure the performan
ewith the well-known Apa
he web-server. We evaluatethe system overhead for both multipro
ess version andmultithread version of Apa
he. Our evaluation serves todemonstrate two things: �rst, that �ne-grained rollba
ksupport is possible, and 
an be applied to real appli-
ations; and se
ond, that the performan
e impa
t on
ommon-
ase exe
ution is minimal.In all the experiments reported herein, the web serveris bottle-ne
ked by the network and is serving data atfull network throughput of 100Mbps. We use these ex-periments to show that o�-the-shelf ma
hines(1.8MHz,512MB RAM) have enough spare 
pu 
y
les to provide�ne-grained rollba
k without a�e
ting 
lient's per
eivedperforman
e. The server is 
he
kpointed multiple times(typi
ally thri
e) during the pro
essing of ea
h request.We essentially 
reate a 
he
kpoint just before readingthe HTTP request o� a newly a

epted so
ket, beforepro
essing a valid HTTP request from an existing 
on-ne
tion and before writing out the HTTP response ontothe so
ket. Thus, at any point of time, Flashba
k main-tains as many shadow images as the total number ofrequests being pro
essed by the server. All data pointsin this se
tion have been averaged over three runs.The Apa
he server 
an be 
on�gured to run in a mul-tipro
ess or multithread mode. In the former, Apa
hemaintains a pool of worker pro
esses to servi
e requests.Ea
h worker pro
ess is a single thread and the number ofworkers in the pool is adapted dynami
ally based on loadestimates. However, in the latter, Apa
he uses a mu
hsmaller pool of worker pro
esses, with ea
h worker pro-
ess 
onsisting of multiple threads implemented by thepthread pa
kage. We present here performan
e �guresfor both 
on�gurations of the Apa
he server. In thisexperiment, the web server 
he
kpoints its state uponthe arrival of request for a page, pro
esses the request,

and dis
ards the 
he
kpoint. These results re
e
t theoverhead of 
apturing state. Sin
e Flashba
k 
urrentlydoes not support replay of multithreaded exe
ution andshared memory, we disabled logging for replay duringthese experiments.To exer
ise the web server, we use an http request-generating 
lient appli
ation, WebStone [73℄, whi
hsends ba
k-to-ba
k requests to a single web server. Ea
hrequest 
onstitutes a fet
h of a single �le, randomly se-le
ted from a pre-de�ned \working set". The working set
omprised �les of sizes varying between 5KB and 5MB,but the majority of requests 
onstituted a fet
h of 5KB.The request generating appli
ation forks a pre-de�nednumber of 
lient pro
esses, ea
h of whi
h submits a se-ries of random requests to the web server. The serverwas run on a o�-the-shelf 1.8GHz Pentium IV ma
hine,
onne
ted to the 
lient via a 100Mbps LAN. Perfor-man
e was measured in terms of throughput, aggregateresponse time and load on the server CPU. In all theexperiments reported here, the server was operating atthe full network throughput of 100Mbps.We 
ompare the Apa
he web-server on the prototypesystem with a baseline system running the original ver-sion of Linux. Figure 8 shows throughput and responsetime in Flashba
k and the baseline system with Apa
herunning in multipro
ess mode. It is 
lear from thegraphs that there is no signi�
ant di�eren
e between the
lient-per
eived throughput and response time. Whenthe number of 
lients is small, Flashba
k has 10% lowerthroughput, even though the average response time isthe same as the baseline system. However, when thenumber of 
lients in
reases, the di�eren
e between base-line and Flashba
k disappears. In some 
ases, Flash-ba
k performs even better than the baseline system. We
onsider these small di�eren
es well within expe
ted ex-perimental varian
e, and 
on
lude that the impa
t ofrollba
k support on Apa
he performan
e is negligible.Figure 9 shows the results for the multithread ver-sion of Apa
he. As expe
ted, the overheads imposed byFlashba
k on multithreaded exe
ution are slightly lowerthan those for the multipro
ess version, eviden
ed bythe throughput �gures whi
h more 
losely mat
h oneanother in most 
ases. This lower overhead is a dire
tresult of fewer e�e
tive system 
alls, be
ause when one
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(a) Throughput (b) Response timeFigure 8: Throughput and response time with Multipro
ess Apa
he web-server. Baseline 
orresponds to the 
ase running in thedefault Linux system without rollba
k support, and With rollba
k support 
orresponds to the Linux kernel modi�ed to in
lude rollba
ksupport. The results shown in these �gures indi
ate that throughput and response time are not a�e
ted by Flashba
k. These timesre
e
t state-
apture overhead
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e
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(a) Multipro
ess (b) MultithreadFigure 10: One-minute CPU load averages for the host on whi
h the Apa
he web-server is running. The 
urves demonstrate theextra work being performed by the kernel when 
he
kpointing is enabled.thread undergoes a 
apture event, the state of all theother threads is automati
ally 
aptured. Subsequent
apture-events on the other threads of this pro
ess aretreated as nops during the lifetime of this shadow pro-
ess. Hen
e the number of 
apture events ne
essary aremu
h fewer.Although 
lient-per
eived system performan
e re-mains almost una�e
ted, the kernel does perform extrawork ea
h time a 
he
kpoint is initiated. Of 
ourse, thisdoes not 
ome for free. To quantify the 
ost, we moni-tored CPU load average on the ma
hine hosting the web-server. The metri
 we use measures the average num-ber of pro
esses waiting on the run queue over the lastminute, whi
h is an estimate of system load as it statis-
ti
ally 
aptures the amount of time ea
h pro
ess spendson the run queue. Figure 10 plots these results for themultipro
ess and multithread versions. The graphs ex-pose the overhead in 
apturing shadow state, whi
h inour evaluation o

urs very frequently (on
e every requestre
eived by the server). Note that even though the 
puutilization of the server in
reases by 2-4 times, the 
lientper
eived performan
e, in both data bytes delivered andtime to respond, remains un
hanged. We assert that theexperimental setup is realisti
 as modern web-servers areoften 
onstrained by network bandwidth and have spare
pu 
y
les.In both the multipro
ess and multithread 
on�gura-tions, CPU load in
reases signi�
antly. In the single-



threaded 
ase, the extra load is quite high. This is be-
ause a multipro
ess Apa
he webserver uses a 
olle
tionof separate Unix pro
esses to handle web requests, ea
hof whi
h now 
aptures shadow state when handling arequest. In the multithreaded version, the state-
aptureevent o

urs on
e for all threads of exe
ution, be
ausewe 
apture the state of all threads, en masse, ea
h time a
he
kpoint is taken. The smaller number of system 
alls,and the smaller size of the state 
aptured (per workerthread), together 
ontribute to the multithread 
on�gu-ration exhibiting better CPU load than the multipro
ess
on�guration.7 Using Flashba
k in gdbUsing Flashba
k, it is fairly straightforward to in
orpo-rate support for 
he
kpointing, rollba
k and determinis-ti
 replay into a debugging utility su
h as gdb.We have modi�ed gdb to support three new 
om-mands { 
he
kpoint, rollba
k, and dis
ard, for 
reating
he
kpoints, to support rollba
k and deterministi
 re-play of debugged programs. Programmers 
an set upbreakpoints at pla
es where they might want to 
reate
he
kpoints. At these breakpoints, after seeing the stateof the program, they 
an 
hoose to 
reate a new 
he
k-point by using the 
he
kpoint 
ommand. They 
an alsodis
ard earlier 
he
kpoints, thereby freeing system re-sour
es asso
iated with those 
he
kpoints by using thedis
ard 
ommand. If they �nd the system state to bein
onsistent, they 
an roll ba
k to an earlier 
he
kpointby using the rollba
k 
ommand.Using Flashba
k, gdb 
an be made to automati
allytake periodi
 
he
kpoints of the state of the pro
ess be-ing exe
uting. New 
ommands are added into the de-bugger user interfa
e to allow programmers to enable ordisable automati
 
he
kpointing during exe
ution of thedebugged program. Programmers also have 
ontrol overthe frequen
y of 
he
kpointing. This frees the program-mer from having to insert breakpoints at appropriatelo
ations in the 
ode and expli
itly taking 
he
kpoints.In order to in
orporate 
he
kpoints into gdb, we made
hanges to the target system handling 
omponent andthe user interfa
e 
omponents. The target system han-dling 
omponent handles the basi
 operations dealingwith the a
tual exe
ution 
ontrol of the program, sta
kframe analysis and physi
al target manipulation. This
omponent handles software breakpoint requests by re-pla
ing a program exe
ution with a trap. During ex-e
ution, the trap 
auses an ex
eption whi
h gives 
on-trol to gdb. The user 
an 
hoose to take a 
he
kpointat this time. gdb does this by making a 
he
kpointsystem 
all passing the pro
ess ID of the pro
ess beingdebugged. Similarly, for rollba
k and replay, gdb usesthe rollba
k and replay system 
alls respe
tively.For automati
 
he
kpointing, in addition to these
hanges, gdb maintains a timer that keeps tra
k of timesin
e the last 
he
kpoint. The timeout for the timer 
anbe set by the user. When a timeout o

urs, gdb 
he
k-

points the pro
ess.8 Con
lusions and Future WorkIn this paper we presented a lightweight OS extension
alled Flashba
k to support �ne-grained rollba
k and de-terministi
 replay for the purpose of software debugging.Flashba
k uses shadow pro
ess to eÆ
iently 
apture in-memory states of a pro
ess at di�erent exe
ution points.To support deterministi
 reply, Flashba
k logs all inter-a
tions of the debugged program with the exe
ution en-vironment. Results from our prototype implementationon real systems show that our approa
h has small over-heads and 
an roll ba
k programs qui
kly.Besides software debugging, our system 
an also beused to improve software availability by progressivelyrolling ba
k and re-exe
uting to avoid transient er-rors [78℄. In addition, our approa
h 
an be extendedto provide lightweight transa
tion models that requireonly atomi
ity but not persisten
e.We are in the pro
ess of 
ombining Flashba
k withhardware ar
hite
ture support for rollba
k and deter-ministi
 replay [56℄ to further redu
e overhead. Weare also evaluating Flashba
k with more appli
ations.Flashba
k 
urrently only works for programs that runon a single ma
hine. We are exploring ways to extend itto support distributed 
lient-server appli
ations by 
om-bining with te
hniques surveyed by Elnozahy et al. [18℄.Flashba
k in
luding the pat
hes to both Linux andgdb will be released to the open sour
e 
ommunity sothat other resear
hers/developers 
an take advantage ofFlashba
k in intera
tive debugging.9 A
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