
Flashba
k: A Lightweight Extension for Rollba
k andDeterministi
 Replay for Software Debugging �Sudarshan M. Srinivasan, Srikanth Kandula, Christopher R. Andrews and Yuanyuan Zhoufsmsriniv, kandula,
randrws, yyzhoug�
s.uiu
.eduDepartment of Computer S
ien
eUniversity of Illinois, Urbana-ChampaignUrbana, IL 61801ABSTRACTSoftware robustness has signi�
ant impa
t on systemavailability. Unfortunately, �nding software bugs is avery
hallenging task be
ause many bugs are hard to re-produ
e. While debugging a program, it would be veryuseful to rollba
k a
rashed program to a previous exe
u-tion point and deterministi
ally re-exe
ute the \buggy"
ode region. However, most previous work on rollba
kand replay support was designed to survive hardware oroperating system failures, and is therefore too heavy-weight for the �ne-grained rollba
k and replay neededfor software debugging.This paper presents Flashba
k, a lightweight OS ex-tension that provides �ne-grained rollba
k and replay tohelp debug software. Flashba
k uses shadow pro
essesto eÆ
iently roll ba
k in-memory state of a pro
ess, andlogs a pro
ess' intera
tions with the system to supportdeterministi
 replay. Both shadow pro
esses and loggingof system
alls are implemented in a lightweight fashionspe
i�
ally designed for the purpose of software debug-ging.We have implemented a prototype of Flashba
k inthe Linux operating system. Our experimental resultswith mi
ro-ben
hmarks and real appli
ations show thatFlashba
k adds little overhead and
an qui
kly roll ba
ka debugged program to a previous exe
ution point anddeterministi
ally replay from that point.1 Introdu
tionAs rapid advan
es in
omputing hardware have led todramati
 improvements in
omputer performan
e, issuesof reliability, maintainability, and
ost of ownership arebe
oming in
reasingly important. Unfortunately, soft-ware bugs are as frequent as ever, a

ounting for asmu
h as 40% of
omputer system failures [45℄. Software�This work was supported in part by NSF under grantsCCR-0325603, EIA-0072102, and CHE-0121357; by DARPAunder grant F30602-01-C-0078; by an IBM SUR grant; andby additional gifts from IBM and Intel.

bugs may
rash a produ
tion system, making servi
esunavailable. Moreover, \silent" bugs that run unde-te
ted may
orrupt valuable information. A

ording tothe National Institute of Standards and Te
hnology [48℄,software bugs
ost the U.S. e
onomy an estimated $59.5billion annually, approximately 0.6% of the gross domes-ti
 produ
t! Given the magnitude of this problem, thedevelopment of e�e
tive debugging tools is imperative.Software debugging has been the fo
us of mu
h re-sear
h. Popular avenues of su
h resear
h in
lude dete
-tion and analysis of data ra
es [7, 23, 46, 63, 68, 69, 74℄,stati

ompiler-based te
hniques to dete
t potentialbugs [20, 24, 31, 36, 64, 76℄ possibly aided by stati

he
king of user-dire
ted rules [19, 27, 81℄, run-time
he
king of data types to dete
t some
lasses of memory-related bugs [41, 49℄, and more extensive run-time
he
ksto dete
t more
omplex program errors [28, 51℄. Thesestudies have proposed e�e
tive solutions to stati
ally ordynami
ally dete
t
ertain types of software bugs.Even though previous solutions have shown promisingresults, most software bugs still rely on programmers tointera
tively debug using tools su
h as gdb. Intera
tivedebugging
an be a very
hallenging task be
ause somebugs o

ur only after hours or even days of exe
ution.Some of them o

ur only with a parti
ular
ombinationof user input and/or hardware
on�gurations. More-over, some bugs, su
h as data ra
es, are parti
ularlyhard to �nd be
ause they only o

ur with a parti
ularinterleaved sequen
e of timing-related events.These problems motivate the need for low-overheaddebugging support that allows programmers to rollba
kto a previous exe
ution point and re-exe
ute the buggy
ode region. A deterministi
 replay re
reates the pre
ise
onditions that lead to the bug and helps to understandthe
auses of the bug. In most debugging tools today, ifan error o

urs, the program needs to be restarted fromthe very beginning and may take hours or even daysto rea
h the buggy state. If the bug is time-related, thebug may not o

ur during re-exe
ution. It would be veryuseful if an intera
tive debugger su
h as gdb
an period-i
ally
he
kpoint the pro
ess state of the debugged pro-gram during its dynami
 exe
ution. If an error o

urs,the programmer
an request gdb to rollba
k to a previ-

ous state and then deterministi
ally replay the programfrom this state so that the programmer
an see how thebug manifests in order to
at
h its root
ause.Though system support for rollba
k and replay hasbeen studied in the past, most previous approa
hes aretoo heavy-weight to support software debugging. Themain reason is that these approa
hes are geared towardsurviving hardware or operating system failures. There-fore, most of these systems
he
kpoint program stateto se
ondary storage su
h as disk, remote memory ornon-volatile memory [3, 10, 12, 34, 37, 38, 39, 54, 61,77, 79, 82℄. Correspondingly, these systems in
ur farhigher overhead than is ne
essary or permissible to sup-port software debugging. Unlike hardware/OS failures,we only need to rollba
k and replay a program when it
rashes due to software bugs. Moreover, most previoussystems
annot a�ord frequent
he
kpointing be
ause ofthe high overheads involved in these approa
hes. As aresult, appli
ations may have to roll ba
k to a point inthe distant past (e.g., 1-2 hours ago).Besides
he
kpointing systems, other work on roll-ba
k support { su
h as transa
tion support for main-memory data stru
tures [11, 29, 40, 43, 60, 62℄, systemre
overy [9, 42, 65, 72℄ or logging and replay of systemevents [6, 33, 50, 66, 70℄ { either have problems similar toprevious
he
kpointing systems or require appli
ationsto be rollba
k-aware. These limitations hinder the ef-fe
tiveness of these solutions for software debugging ofgeneral programs.In this paper, we present a lightweight OS extension
alled Flashba
k that provides rollba
k and determin-isti
 replay support for software debugging. In orderto eÆ
iently
apture the in-memory state of an exe
ut-ing pro
ess, Flashba
k uses shadow pro
esses to repli
atea program's exe
ution state. Moreover, Flashba
k also
aptures the intera
tions between a program and therest of the system { su
h as system
alls, signals, andmemory mapped regions { to allow for subsequent de-terministi
 re-exe
ution. We have developed a prototypeof our proposed solution in the Linux operating systemthat implements a subset of the features. Our experi-mental results with mi
ro-ben
hmarks and real appli
a-tions show that our system adds little overhead and
anqui
kly roll ba
k to a previous exe
ution point.As an example of how deterministi
 replay support
an be used for debugging, we also explore the ne
essaryextensions to gdb in order to provide user support for
he
kpointing, rollba
k and deterministi
 replay. Theseextensions will allow programmers to roll ba
k a pro-gram to a previous state when something has gone awry,and intera
tively replay the buggy
ode region. Withsu
h support, the programmer does not need to restartthe exe
ution of the program or to worry about the re-produ
ibility of the bug.This paper is organized as follows. Se
tion 2 des
ribesthe motivation and ba
kground of our work. Se
tion 3presents an overview of Flashba
k, and se
tions 4 and 5des
ribe in greater detail our approa
h for rollba
k of

state and deterministi
 replay. Se
tion 6 presents theexperimental results. Se
tion 7 dis
usses the modi�
a-tions that have been made to gdb in order to
ontrollogging, rollba
k and re
overy from within the debugger.Se
tion 8
on
ludes the paper with a brief dis
ussion ofour experien
e as well as plans for future work.2 Ba
kground and Related WorkOur work builds upon two groups of resear
h: systemsupport for debugging and system support for rollba
k.In this se
tion we dis
uss
losely related work done inthese two dire
tions.2.1 System Support for DebuggingSoftware debugging has been the subje
t of substantialresear
h and development. Existing approa
hes mainlyin
lude
ompile-time stati

he
king, run-time dynami

he
king and hardware support for debugging. Somerepresentative
ompile-time stati

he
kers were pro-posed by Wagner [75, 76℄, Lujan [44℄ Evans [21℄, En-gler [19, 27, 81℄. Examples of run-time dynami

he
k-ers in
lude Rational's Purify [30℄, KAI's Assure [35℄,Lam et. al.'s DIDUCE [28, 51℄ and several oth-ers [41, 49, 15, 53, 58, 63℄. Re
ently, several hardwarear
hite
ture te
hniques have been proposed to dete
tbugs [26, 1, 14, 47, 56℄.While these
ompile-time, run-time or hardware te
h-niques are very useful in
at
hing
ertain types of bugs,many bugs still
ause the programmer to rely on inter-a
tive debuggers su
h as gdb. To
hara
terize timing-related bugs su
h as ra
e
onditions, simply rerunningthe program with the same input may not reprodu
e thesame bug. Moreover, some bugs may appear only afterrunning the program for several hours, making the de-bugging pro
ess a formidable task. To understand and�nd root
auses of su
h bugs, it is very useful to providesystem support for reprodu
ing the o

urring bug, whi
hmay only appear for a parti
ular
ombination of user in-puts and
on�gurations or after a parti
ular interleavedsequen
e of time-related events.One e�e
tive method to reprodu
e a bug is to rollba
k to a previous exe
ution state in the vi
inity of thebuggy
ode, and deterministi
ally replay the exe
utioneither intera
tively inside a debugger or automati
allywith heavy instrumentation. This requires an eÆ
ientrollba
k and deterministi
 replay me
hanism.2.2 System Support for Rollba
kRollba
k
apability is provided in many systems in-
luding
he
kpointing systems, main-memory transa
-tion systems and software rejuvenation.Che
kpointing has been studied extensively in thepast. Che
kpointing enables storing the previous exe-

ution state of a system in a failure-independent lo
a-tion. When the system fails, the program
an restartfrom the most re
ent
he
kpoint in either a di�erentma
hine or the same ma
hine after �xing the
auseof the failure. Sin
e most
he
kpointing systems as-sume that the entire system may fail,
he
kpoint datais stored either in disks [12, 34, 37, 38, 39, 79, 61℄, re-mote memory [3, 54, 82℄ and non-volatile or persistentmemory [10, 80℄. As a result, most
he
kpoint systemsin
ur high overhead and
annot a�ord to take frequent
he
kpoints. They are, therefore, too heavy-weight tosupport rollba
k for software debugging.Systems that provide transa
tion support for main-memory data stru
tures also allow appli
ations to roll-ba
k to a previous exe
ution point [11, 29, 43, 60, 62℄.For example, Lowell and Chen have developed a sys-tem that provides transa
tion support in the Rio Vistare
overable virtual memory system [11, 43℄. Most ofthese approa
hes require appli
ations to be written us-ing the transa
tion programming model;
onsequentlythey
annot be
onveniently used for debugging a gen-eral program.Borg et al developed a system [5℄ that provides faulttoleran
e by maintaining an ina
tive ba
kup pro
ess. Inthe event of a system failure, the ba
kup pro
ess
an takeover the exe
ution of a pro
ess that
rashes. The ba
kuppro
ess is kept up-to-date by making available to it allthe messages that the a
tive pro
ess re
eived. Their im-plementation is based on the assumption that two pro-
esses starting from the same initial state will performidenti
ally upon re
eiving the same input. While thisassumption holds for re
overy-based systems, it is notthe
ase for general software sin
e the state of the restof the system may have
hanged in the meantime. De-terministi
 replay of a pro
ess requires that it re
eivethe same non-deterministi
 events during replays as dur-ing the original run. These events in
lude responses tosystem
alls, shared memory a

esses, signals, networkmessages et al.Re
overy-oriented
omputing [25, 52℄ is a re
ent re-sear
h initiative that adopts the approa
h that errorsare inevitable, so support for re
overing from errors isessential for developing and validating highly availablesoftware. Though this is an interesting approa
h to soft-ware availability, most studies in software rejuvenationso far [4, 32, 57℄ have fo
used on restarting the whole ap-pli
ation rather than �ne-grained rollba
k. Crash-onlysoftware [8℄ is a re
ent approa
h to software developmentthat improves the availability of software by using
om-ponent building blo
ks that
an
rash and restart qui
klyinstead of aiming for fault toleran
e. These studies fo-
us more on minimizing mean-time-to-re
overy (MTTR)than on software debugging.Feldman and Brown developed a system for programdebugging [22℄ that periodi
ally
he
kpoints the mem-ory state of a pro
ess by keeping tra
k of pages tou
hedby the pro
ess. They propose using this system for pro-gram restart and
omprehensive exe
ution path logging.But their me
hanism involves
hanges to the
ompiler,

loader, standard library and the kernel. It tra
ks allmemory a

esses via
ode instrumentation and therebythis approa
h is very heavy-weight. Further, they do notprovide deterministi
 replay; therefore, some errors maynot manifest themselves during subsequent re-exe
ution.Russinovi
h[59℄ suggests a lightweight approa
h to lognondeterministi
 a

esses to shared memory by merelyreplaying the interleaved order of pro
esses sharing thememory deterministi
ally. An appli
ation is instru-mented to obtain �ne-grained software instru
tion
oun-ters and the OS has to re
ord the lo
ation of
on-text swit
hes. This te
hnique
an be potentially usedby FlashBa
k to support the replay of shared-memorymulti-pro
essed program.ReVirt[17℄ is a novel approa
h to intrusion analysisthat en
apsulates appli
ations within a virtual OS thatitself runs as a pro
ess in the guest OS. This te
hniquede
reases the size of the trusted
omputing base (TCB)and allows pre
ise logs to be maintained by the guest OS.Flashba
k is signi�
antly di�erent from ReVirt. First,debugging support needs to
he
kpoint appli
ation stateon times
ales(minutes) that are several orders of magni-tude smaller than in ReVirt(days). Se
ond, unlike Re-Virt whi
h has to
ontend with mali
ious intruders bylogging "everything", Flashba
k need only log
hangesthat are made by the appli
ation being debugged andexternal events that a�e
t its operation.The
onstraints with existing system support for roll-ba
k motivate the need for a new lightweight, �ne-grained rollba
k and deterministi
 replay solution spe
if-i
ally designed for software debugging.3 Overview of Flashba
kFlashba
k provides three basi
 primitives for debugging,Che
kpoint(), Dis
ard(x) and Replay(x).� stateHandle = Che
kpoint (): Upon this
all, thesystem
aptures the exe
ution state at the
urrentpoint. A state handle is returned so that the pro-gram
an later use it for rollba
k.� Dis
ard (stateHandle): Upon this
all, the
ap-tured exe
ution state spe
i�ed by stateHandle isdis
arded. The program
an no longer roll ba
kto this state.� Replay (stateHandle): Upon this
all, the pro
essis rolled ba
k to the previous exe
ution state spe
i-�ed by stateHandle and the exe
ution is determin-isti
ally replayed until it rea
hes the point whereReplay() is
alled.To provide the above primitives, Flashba
k usesshadow pro
esses to eÆ
iently
apture the in-memoryexe
ution state of a pro
ess at the spe
i�ed exe
utionpoint. The main idea of shadow pro
ess is to fork a newpro
ess at the spe
i�ed exe
ution point and this new pro-
ess maintains the
opy of the pro
ess's exe
ution state

in main memory. On
e a shadow pro
ess is
reated, itis suspended immediately. If rollba
k is requested, thesystem kills the
urrent a
tive pro
ess and
reates a newa
tive pro
ess from the shadow pro
ess that
apturedthe spe
i�ed exe
ution state. Sin
e Flashba
k does notattempt to re
over from system
rashes or hardware fail-ure, there is no need to store the shadow pro
ess ontodisk or other persistent storage. This redu
es the over-head of the
he
kpoint pro
ess signi�
antly. Moreover,
opy-on-write is used to further redu
e the overhead.While our method of
he
kpointing allows the in-memory state of a pro
ess to be reinstated, the pro
essmay not see the same set of open �le des
riptors or net-work
onne
tions during re-exe
ution. Even if the stateof �le des
riptors
an be reprodu
ed, it is still a
umber-some task to restore the
ontents of the �le to the orig-inal state, and to ensure that network
onne
tions willrespond exa
tly as in the original exe
ution. Similarly,during replay it may be undesirable to let the pro
essa�e
t the external environment again by, say, deleting�les or modifying their
ontent.In order to support deterministi
 replay of a rolledba
k pro
ess, we adopt an approa
h wherein we re
ordall intera
tions that the exe
uting pro
ess has with theenvironment. During replay, the logged information isused to ensure that the re-exe
ution appears \identi
al"to the original run. When a
he
kpoint is initiated us-ing the
he
kpoint primitive, in addition to
apturingin-memory exe
ution state, the system also re
ords theintera
tions between the pro
ess and its environment.During replay, the previously
olle
ted information isused to give the pro
ess the impression that the exter-nal environment is responding exa
tly as it did duringthe original exe
ution, and that it is a�e
ting the envi-ronment in the same way.Shadow pro
esses
an be used in
onjun
tion with thedeterministi
 replay me
hanism either within a debug-ging environment like gdb, or through expli
it
alls madeby the program being debugged:� Intera
tive debugging: One possible usage s
enariois where the debugging platform
an periodi
ally
apture the state of an exe
uting pro
ess by invok-ing
he
kpoint (similar to the insertion of break-points in gdb, for instan
e). If an error o

urs, theprogrammer
an then instru
t the debugger to rollba
k exe
ution to a previously
aptured state byspe
ifying the time of the earlier
he
kpoint.� Expli
it
he
kpointing and rollba
k: An alternateusage s
enario is that the programmer takes
on-trol of when
he
kpoints are taken in the
ode.Figure 1 shows an example of a program wherethe programmer has inserted expli
it invo
ations to
he
kpoint, replay and dis
ard primitives.Automati

he
kpoint/rollba
k support inside anintera
tive debugger is
onvenient and requires no
hanges to the program sour
e
ode. On the other

Figure 1: Code for a pro
ess augmented with primitiveshand, giving the programmer expli
it
ontrol on
he
k-points/rollba
ks enables more intelligent and meaningful
he
kpoint generation.Figure 1 shows a program in whi
h the programmer
alls
he
kpoint in line 1. If the read operation in line6 fails, the programmer
an roll ba
k to the exe
utionstate
aptured at line 1. To help
hara
terize the bug,the exe
ution from line 1 to line 6
an be replayed de-terministi
ally by atta
hing an intera
tive debugger orswit
hing to a pro�ling mode with extensive instrumen-tation. If line 6 su

eeds, the
he
kpoint is dis
arded.4 Rollba
k Using Shadow Pro
esses4.1 The Main IdeaFlashba
k
reates
he
kpoints of a pro
ess by repli
at-ing the in-memory representation of the pro
ess in theoperating system. This snapshot of a pro
ess, knownas the shadow pro
ess, is suspended immediately after
reation and is stored within the pro
ess stru
ture. Ashadow pro
ess represents the passive state of the exe-
uting pro
ess at a previous point, and
an be used tounwind the exe
ution of the pro
ess by repla
ing the newexe
ution state with the shadow state and
ommen
ingexe
ution in the normal fashion. If a shadow state is notneeded anymore, the pro
ess
an dis
ard it.The
reation of a shadow pro
ess for a running pro-
ess, an event we refer to as state-
apture, is a
hievedby
reating a new shadow pro
ess stru
ture in the ker-nel, and initializing this stru
ture with the
ontents ofthe original pro
ess' stru
ture. The state information
aptured in
ludes pro
ess memory (sta
k, heap), reg-isters, �le des
riptor tables, signal handlers and otherin-memory state asso
iated with a pro
ess. A pointerto this shadow stru
ture is then stored in the original

Active State
Active State

Shadow State

Active State

X

Active State

Shadow State

X

checkpoint

discard replay

Shadow StateFigure 2: E�e
t of the primitives on the state of an exe
utingpro
ess. When
he
kpoint is invoked, the pro
ess makes a
loneof its exe
ution state. Upon dis
ard the shadow is removed; if arollba
k o

urs, the original exe
ution state is dis
arded.pro
ess' stru
ture. The new representation of a pro
esswith its shadow pro
ess is shown in �gure 2.The
he
kpoint, dis
ard and replay
alls are eitherautomati
ally generated by the debugging infrastru
tureat spe
i�
 intervals, or inserted by the programmer inthe sour
e
ode (as shown in the example in the previousse
tion). In
ase of a dis
ard, the system dis
ards thespe
i�ed shadow state. If a
he
kpoint is requested, thesystem
reates a new shadow of the
urrent state andstores it. In the
ase of a rollba
k, the pro
ess rolls ba
kthe exe
ution state to the previously generated shadowpro
ess. Figure 2 illustrates the e�e
t of these primitiveson the state of a pro
ess.It is possible to maintain two or more shadow pro-
esses for an exe
uting pro
ess. Multiple shadowpro
esses are useful for progressive rollba
k and re-exe
ution during debugging [78℄. In some
ases, whenan error o

urs, rolling ba
k to only the most re
ent ex-e
ution point before replay may not be enough to
at
hthe root of the bug be
ause it
ould have happened be-fore this exe
ution point. Therefore, it is ne
essary toroll ba
k further and deterministi
ally restart from anearlier exe
ution point. It is also possible to roll ba
kto the same shadow multiple times and
ause additional
he
kpoints to be taken during replay.To redu
e overhead, shadow pro
ess state is main-tained using
opy-on-write. In other words, state
ap-ture pro
eeds through the
reation of an in-memory
opy-on-write map of the
urrent state. When a shadowpro
ess is
reated, the virtual memory of the pro
ess ismarked as read-only. A �rst write to any page by thea
tive pro
ess would trigger the
reation of a
opy ofthe old data. This optimization has a
ouple of bene-�ts. First, the time to
reate a shadow is signi�
antlyredu
ed by eliminating the need t0
opy possibly largeamounts of memory state. Se
ond, a shadow pro
esso

upies little spa
e(in memory). Third, multiple shad-ows
reated at di�erent exe
ution points do not needto maintain dupli
ate
opies of the state. Finally, thesigni�
ant overlap in memory pages between a shadowpro
ess and the a
tive pro
ess minimizes the impa
t onthe paging behavior of the pro
ess due to dis
ard/replayof state. However, writes onto
opy-on-write prote
tedmemory during exe
ution of the main pro
ess does in-
ur overhead. Fortunately, our experimental results pre-

sented in Se
tion 6 show that these overheads are notsigni�
ant.4.2 Rolling ba
k multi-threaded pro-
essesRollba
k of a multi-threaded pro
ess requires spe
ial at-tention. This is be
ause in a multi-threaded environ-ment several
omponents of the pro
ess state are impli
-itly shared a
ross all threads that belong to the samepro
ess. For example, threads implemented using thepthread pa
kage on Linux, share memory, �le des
riptorsand signal handlers with ea
h other. The only thread-private states are user-spa
e (and kernel) sta
ks. Su
himpli
it sharing vastly
ompli
ates rollba
k be
ause itis no longer possible for a thread to revert to pristineversions of the shadow state without impa
ting the exe-
ution of other threads.There are two approa
hes to support �ne-grained roll-ba
k of multi-threaded programs. One is to
apturethe pro
ess state for the entire pro
ess and roll ba
kall threads to a previous exe
ution point. The se
ondapproa
h is to tra
k thread dependen
ies su
h as mem-ory read-write and �le read-write dependen
ies and rollba
k only those threads that depend on the erroneousthread [2, 16, 18, 67, 70℄.Flashba
k uses the �rst approa
h to support rollba
kof multi-threaded programs. In other words, the under-lying system
aptures the exe
ution state of all threadsof a pro
ess at a
he
kpoint. Likewise, when a roll-ba
k o

urs, Flashba
k re-instates the exe
ution stateof all threads by reverting ba
k to a pristine
opy of theshared state. This enables maintenan
e of
onsistentstate among all threads. Thread syn
hronization prim-itives, su
h as a
quiring/releasing lo
ks and semaphoreoperations are also impli
itly rolled ba
k.Our approa
h has several advantages over the alter-native for software debugging, even though rolling ba
kall the threads of a pro
ess when only one of them en-
ounters an error, may seem ineÆ
ient. First, our ap-proa
h is simpler be
ause it does not require
ompli-
ated logi
 to keep tra
k of thread dependen
ies. Tra
k-ing thread dependen
ies is very diÆ
ult be
ause
on
ur-rent a

esses to shared memory are not handled throughsoftware or some spe
ialized
a
he
oheren
e
ontroller.Tra
king dependen
ies requires either hardware supportor instrumentation of appli
ation binary
ode to notifythe operating system about data sharing. The logi
 totra
k dependen
ies adds overheads to the error-free ex-e
ution and is also error-prone. Se
ond, to
hara
terizethread syn
hronization or data ra
es, it might be moreinformative to roll ba
k all threads and deterministi
allyre-exe
ute all threads step-by-step intera
tively. Fur-thermore, the ineÆ
ien
y of rolling ba
k all threads isen
ountered only when faults o

ur - the less
ommon
ase, while dependen
y tra
king, if done dynami
allywould lead to overhead on the
ommon
ase.

4.3 Implementation in LinuxWe have modi�ed the Linux 2.4.22 kernel by addingthree new system
alls {
he
kpoint(), dis
ard() andreplay() to support rollba
k and replay. The kernelhandles these fun
tions as des
ribed earlier. The over-head of these system
alls on normal pro
ess exe
utionis an important
onsideration in our implementation.To
apture shadow state, we
reate a new pro
ess
on-trol blo
k (task stru
t in Linux terminology) and ini-tialize it with a
opy of the
alling pro
ess's own stru
-ture. This
opy involves
reation of
opy-on-write mapsover the entire pro
ess memory via the
reation of newmm stru
t, �le stru
t and signal stru
t. The register
ontents of the
urrent exe
ution
ontext when it waslast in user-spa
e are
opied onto the new
ontrol blo
kand �nally the kernel sta
k of the new
ontrol blo
kis initialized by hand su
h that the shadow pro
ess,when exe
uted,
ontinues exe
ution by returning fromthe
he
kpoint system
all with a di�erent return value.The state
apture pro
edure is di�erent from the forkoperation in several ways. The primary di�eren
e is thatafter a fork operation, the newly
reated pro
ess is visi-ble to the rest of the system. For instan
e, the module
ount is in
remented to re
e
t the fa
t that the
hildpro
ess is also sharing the same modules. The newly
reated pro
ess is added to the s
heduler's run lists andis ready to be s
heduled. In
ontrast, a shadow pro
essis
reated only for maintaining state. It is not visibleto the rest of the system and does not parti
ipate ins
heduling.After
apturing a shadow state, the
alling pro
essreturns from the system
all and
ontinues exe
ution asnormal, with the shadow image in tow. Any
hangesmade to the state after the
he
kpoint leave the shadowimage in its pristine state.A
all to the dis
ard() system
all deletes a pro
ess'sshadow image and releases all resour
es held by it. Thereplay() system
all, on the other hand, drops the re-sour
es of the
urrent image, and overwrites the pro-
ess
ontrol blo
k with the previously
aptured shadowimage. Sin
e the memory map of the
urrent pro
ess
hanges during the
all, the page tables
orrespondingto the new mm stru
t are loaded by a
all to swit
h mm.A subtle result of reinstating the shadow image is thatthe replay() system
all never returns to the
aller. Assoon as the shadow be
omes a
tive for the
aller, thereturn address for the replay()
all is lost (it was partof the spe
ulative state), being repla
ed instead withthe return address of the
he
kpoint()
all that
orre-sponds to the state that the pro
ess is rolling ba
k to.When we implemented rollba
k support for multi-threaded programs in Linux, we en
ountered many
hal-lenges be
ause of the design of Linux thread pa
kagethat our implementation is based on: pthreads. In thisthread pa
kage, there is a one-to-one mapping betweenuser-spa
e and kernel-spa
e threads, i.e. ea
h user-spa
ethread has an exe
utable pro
ess
ounterpart inside the

kernel. State sharing is a
hieved by using the
lone sys-tem
all to
reate lightweight pro
esses that share a

essto memory, �le des
riptors and signal handlers amongother things. POSIX
omplian
e, with respe
t to deliv-ery of signals (and other requisites), is ensured by
reat-ing an LWP thread manager that is the parent of all thethreads (LWP's) asso
iated with a pro
ess. While theone-to-one mapping allows the thread library to
om-pletely ignore the issue of s
heduling between threads atuser-spa
e, it presents several
ompli
ations for rollba
k.Re
all that when one thread attempts to pro
ess a
he
kpoint event, we need to
apture the state of all theother threads of that pro
ess. Sin
e every user-spa
ethread is mapped to a kernel thread, the other threadsmay be exe
uting system
alls or
ould be blo
ked in-side the kernel waiting for asyn
hronous events (sleep-SIGALRM, disk IO et
.). Capturing the transient stateof su
h threads
ould easily lead to state in
onsisten
yupon rollba
ks, su
h as rolling ba
k to a sleeping statewhen the
orresponding kernel timer has already ex-pired1. It is diÆ
ult to
apture the state of an exe
ution
ontext from within a di�erent exe
ution
ontext.We are
urrently exploring a solution to this prob-lem by expli
itly identifying su
h troublesome s
enariosand manipulating the user-spa
e and kernel sta
ks toensure that the interrupted system
all is re-exe
utedupon rollba
k. Spe
i�
ally, threads that are blo
ked insystem
alls are
he
kpointed as if they are about tobegin exe
ution of this interrupted system
all.Noti
e that apparently simple solutions that
ir
um-vent this problem su
h as using inter-pro
ess
ommuni-
ation or expli
it barrier syn
hronization prior to state
apture are not appli
able. In the former
ase, IPCme
hanisms su
h as signals and pipes in
rease the la-ten
y of the state
apture event be
ause their pro
essingis usually deferred, and is often not deterministi
. Bar-rier syn
hronization on the other hand, would
ause thepro
essing of a state
apture event to be delayed untilthe event is generated on all the threads of a pro
ess,whi
h might be unrealisti
 in
ertain appli
ations.5 Replay Using Re
ord-and-Sandbox5.1 The Main IdeaIn order to deterministi
ally replay the exe
ution of apro
ess from a previous exe
ution state, we need to en-sure during re-exe
ution that the pro
ess per
eives nodi�eren
e in its intera
tion with the environment. Forinstan
e, if the pro
ess did a read on a �le and re
eiveda parti
ular array of bytes, during replay, the pro
essshould re
eive the same array of bytes and return valueas before, though the �le's
ontents may have alreadybeen
hanged.1sleep on Linux is implemented using nanosleep whi
hswaps out the pro
ess after adding a timer onto the kernel'stimer list

Flashba
k does not ensure exa
tly the same exe
u-tion during replay as during the original run. Instead,Flashba
k provides only an impression to the debuggedpro
ess that the exe
ution and intera
tion with the en-vironment appears identi
al to those during the originalrun. It is diÆ
ult to provide the exa
t same exe
utionbe
ause the external environment, su
h as network
on-ne
tions or devi
e states, et
, is beyond the
ontrol of theoperating system. As long as Flashba
k intera
ts withthe debugged pro
ess in the same way, with very highprobability, the bug
an be reprodu
ed during replay.A pro
ess in Flashba
k
an operate in one of twomodes - log and replay. In the log mode the systemlogs all intera
tions of the pro
ess with the environ-ment. These intera
tions
an happen through system
all invo
ations, memory-mapping, shared memory inmulti-threaded pro
esses, and signals. The pro
ess en-ters the log mode when the
he
kpoint primitive is in-voked. In the replay mode, the kernel handles systemintera
tions of the pro
ess by
alling fun
tions that sim-ulate the e�e
t of the original system
all invo
ation.The replay mode is sele
ted when the replay primitiveis invoked. In this mode, Flashba
k ensures the inter-a
tion between the replayed pro
ess and the OS is thesame as was logged during the original run.5.2 System
allsLogging and replay are di�erent for di�erent types ofsystem
alls:� Filesystem-related { Calls su
h as open,
lose, read,write, seek� Virtual memory-related, su
h as memory allo
a-tion, mmap et
.� Network-related { su
h as so
ket
reation, polling,send, re
v et
.� Pro
ess
ontrol { su
h as exe
, fork, exit, wait� Interpro
ess
ommuni
ation-related { su
h as
re-ation and manipulation of message queues andnamed pipes� Utility fun
tions { su
h as getting the time of dayWhen simulating the e�e
t of a system
all, Flash-ba
k has to ensure that the values returned by the sys-tem
all are identi
al to those returned during the origi-nal exe
ution. In addition, the original system
all mayreturn some \hidden" values by modifying memory re-gions pointed to by pointer arguments. For example,the read() system
all loads the data from the �le sys-tem into the bu�er spe
i�ed by one of the parameters.These side e�e
ts also need to be
aptured by Flash-ba
k. A faithful replay of a system
all thus requiresFlashba
k to log all return values as well as side-e�e
ts.While somewhat tedious be
ause of the spe
ial attention

required by ea
h system
all to handling its spe
i�
 ar-guments, this support
an easily be provided for a largebody of system
alls.In Flashba
k, we inter
ept system
alls invoked by apro
ess during its exe
ution. In order to do this, werepla
e the default handler for ea
h system
all witha fun
tion that does the a
tual logging and replay asshown in �gure 3. In logging mode, the fun
tion invokesthe original
all and then logs the return values as wellas the side-e�e
ts. In replay mode, the fun
tion
he
ksto
on�rm that the same
all is being made again, andthen makes the same side-e�e
ts and returns the loggedreturn value.
Original
Handler

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

User−level process handler
System call

Hijacker

Log

Figure 3: Hija
king System Calls for Logging and Replay inFlashba
kA notable ex
eption to bypassing the a
tual system
alls during replay is for
alls related to memory manage-ment, su
h as memory mapping and heap management.In this situation we
annot fake memory allo
ation {if the pro
ess a

esses a memory lo
ation that we havefaked the allo
ation of, then it will result in a segmenta-tion fault. This problem arises be
ause while memory isallo
ated and deallo
ated using the brk() system
all,it may be a

essed through dire
t variable assignments.The
hanges made to memory lo
ations do not make anypermanent
hanges to the system; i.e. the state is
ap-tured by a pro
ess'
he
kpoint ex
lusively. As we dis
ussshortly, however, this may not be the
ase for �les thathave been mapped into memory.On
e system
alls have been handled, mu
h of the pro-
ess' original exe
ution
an be replayed. For instan
e,the pro
ess being replayed
an read data from �les as itdid before even though these �les may a
tually have beenmodi�ed or may not even exist in the system anymore.Similarly, it will re
eive network pa
kets as it originallydid from remote ma
hines. As far as the pro
ess is
on-
erned, it believes that these events are happening asthey did before in terms of both a
tual data ex
hangedand the relative timing of asyn
hronous events.

5.3 Memory-Mapped Files and SharedMemoryLinux supports two di�erent
avors of shared memoryfor interpro
ess
ommuni
ation { System V IPC andBSD mmap. These implementations allow pro
esses toshare a single
hunk of memory by mapping the sharedmemory onto their respe
tive memory spa
es. BSDmmap allows pro
esses to map a previously opened �leinto a region of its memory, after whi
h it
an a

essthe �le using simple memory assignment instru
tions.When a shared segment is requested, the kernel for
esthe memory management unit (MMU) to generate apage fault every time a previously unused se
tion of thismemory region is a

essed. In response to the page fault,the kernel loads one page of data from the �le and readsit into the pro
ess' memory.A �le may be mapped as either private or shared. Any
hanges made to privately mapped �les are visible onlyto that pro
ess and do not result in
hanges to the �le.On the other hand, �les that are mapped as shared maybe modi�ed when the pro
ess writes to the memory area.Further, for shared �les,
hanges made to the �le by apro
esses will be immediately visible to other pro
essesthat have mapped the same region of the �le. Providingreplay for shared memory poses problems as a pro
ess
an a

ess shared memory without making any system
alls, making it harder to tra
k
hanges to the sharedmemory and fake them later.One simple solution for handling memory-mapped�les is to make
opies of pages that are returned uponthe �rst page fault to a memory region mapped to a�le. During replay of requests to
reate memory maps,the memory areas are mapped to dummy �les, and pagefaults are handled by returning saved
opies of pages.Due to the lazy demand-paging approa
h used by Linux,only those pages that are a

essed during exe
ution needto be
opied, thus drasti
ally redu
ing the overhead.This approa
h will not work when the same region ofthe �le is mapped as a shared region by multiple pro-
esses, ea
h of whi
h make
hanges to the region. Thisapproa
h works for �les that have been mapped as pri-vate, as well as shared mappings where all
hanges tothe �le are made by the pro
ess being debugged.Handling shared �le-mappings with multiple pro
esseswriting to the �le is a more
ompli
ated problem, andrequires the kernel to for
e a page fault for every a

essto the shared region by the pro
ess being replayed in-stead of just the �rst a

ess as in the earlier
ase. Apossible enhan
ement to the logging solution would beto set the a

ess rights of a given page to the last pro
essto a

ess it, and thus only fault when another pro
esshas a

essed the page sin
e this one. This way, severalsu

essive reads or updates will only su�er one
ostlyex
eption instead of many. During replay, however, itwould still be required to fault for ea
h a

ess sin
e theother pro
esses might not be around any more to maketheir
hanges.

In Flashba
k,
urrently, we have implemented the sim-ple solution des
ribed earlier. In spite of the enhan
e-ment proposed for shared �le-maps with multiple writ-ers, we believe that an eÆ
ient solution to address this
hallenge will require support from the underlying ar
hi-te
ture. Shared memory
an be dealt with using similarme
hanisms.5.4 Multithreaded appli
ationsWhile the te
hniques outlined above work for appli
a-tions with a single thread of
ontrol, replaying multi-threaded appli
ations poses additional
hallenges. Log-ging
hanges made by a multithreaded appli
ation in-volves logging the
hanges of ea
h thread of the de-bugged pro
ess. During replay, the interleaving ofshared memory a

esses and events has to be
onsistentwith the original sequen
e.Ensuring that the multiple threads are s
heduled inthe same relative order during replay is another issue.For multi-threaded appli
ations running on a single pro-
essor system, we propose adopting the approa
h de-s
ribed in [13℄ for deterministi
 replay. The basi
 ideais to re
ord information about the s
heduling of thethreads during the original exe
ution and use this in-formation during replay to for
e the same interleavingbetween thread exe
utions. Sin
e this implementationwould also be in the kernel, the physi
al thread s
hed-ule is transparent and
an be used in lieu of the logi-
al thread s
hedule information proposed by [13℄. Wewill implement this in the future in the tool, possiblywith the support of ar
hite
ture-level me
hanisms su
has those des
ribed in [55℄.5.5 SignalsSignals are used to notify a pro
ess about a spe
i�
event, or to for
e the pro
ess to exe
ute a spe
ial han-dling
ode when an event is dete
ted during its exe
u-tion. Signals may be sent to a pro
ess either by anotherpro
ess or by the kernel itself. Signals are asyn
hronousand are delivered proa
tively to a pro
ess by the kernel.They may be delivered at any time to a pro
ess. Signalspresent a
hallenge for deterministi
 replay be
ause sig-nals are asyn
hronous events that a�e
t the exe
ution ofa pro
ess. The replaying me
hanism has to ensure thatsignals are delivered at exa
tly the same points duringre-exe
ution as in the original exe
ution.Deterministi
 reprodu
tion of signals may be handledusing the approa
h proposed by Slye and Elnozahy [66℄,though Flashba
k does not
urrently support signal re-play. The me
hanism outlined in their work makes use ofan instru
tion
ounter to re
ord the time between asyn-
hronous events. The instru
tion
ounter is in
luded inmost modern pro
essor systems today. When a signalo

urs, the system
reates a log entry for it, whi
h in-
ludes the value of the instru
tion
ounter sin
e the lastsystem
all invo
ation. During replay, Flashba
k
he
ks

to see if the next log entry
orresponds to a signal. If so,then it initializes the instru
tion
ounter with the timefrom the
urrent system
all till the signal. When a trapis generated be
ause of timeout, the kernel delivers thesignal to the pro
ess.5.6 Implementation in LinuxWe have implemented a prototype of Flashba
k's replayme
hanism in Linux-2.4.22. The prototype handles re-play of system
alls as well as memory-mapped �les toa limited extent. In Linux, a user-spa
e pro
ess invokesa system
all by loading the system
all number intothe eax register and optional arguments in other reg-isters, and then raising a programmed ex
eption withve
tor 128. The handler for this ex
eption, the system
all handler, does several
he
ks and then runs the fun
-tion indexed in the sys
all table array by the system
all number. It �nally returns the results got from thisa
tion to the user pro
ess.We used sys
alltra
k [71℄, an open-sour
e tool thatallows system
alls to be inter
epted for various purposessu
h as logging and blo
king. The
ore of the tool hasbeen implemented in a kernel module whi
h \hija
ks"the system
all table by repla
ing the default handlersfor some system
alls with spe
ial fun
tions. System
all invo
ations
an be �ltered based on several
riteriasu
h as the pro
ess id of the invoking pro
ess as wellas values for spe
i�
 arguments. System
alls that needto be logged are handled in a number of ways. At oneextreme, the spe
ial fun
tion may log the invo
ation ofthe system
all and let the
all go through to the originalhandler, while at the other it may blo
k the system
allinvo
ation and return a failure to the user pro
ess. Thea
tual behavior of the spe
ial fun
tion is
ontrolled usingrules that may be loaded into the kernel.In our implementation, we added a new a
tion typethat the spe
ial fun
tion
an perform, namely theAT REPLAY a
tion for replaying. This a
tion veri�es thatthe system
all invo
ation mat
hes a
all that the pro-
ess originally made, then sets the return value a

ordingto the logged invo
ation and also makes the same sidee�e
ts on the arguments as before. By doing this, it by-passes the a
tual system
all handler for some system
alls and overrides its behavior with that of the simulat-ing fun
tion. For other system
alls su
h as the brk
all,Flashba
k allows the system
alls to be handled by theoriginal system
all handler sin
e memory allo
ationsneed to be made even during replay.6 EvaluationWe evaluate our prototype implementation of Flashba
kusing mi
roben
hmarks as well as real appli
ations. Thetiming data we present were obtained on a 1.8GHz Pen-tium IV ma
hine with 512KB of L2
a
he and 512MBof RAM.

6.1 Overhead of State{CaptureTo perform a very basi
 performan
e evaluationof the rollba
k
apabilities, we instrumented the
he
kpoint(), dis
ard() and replay() system
alls.We then ran a small program that repeatedly invokes
he
kpoint(), does some simple updates and then ei-ther dis
ards the
he
kpoint by
alling dis
ard() orrolling ba
k by
alling replay().Figure 4(a) presents the time for the three basi
 op-erations:
he
kpoint, dis
ard and replay. A
he
kpointtakes around 25-1600�s as the amount of state updatesbetween two
onse
utive
he
kpoints varied from 4KBto 400MB. Sin
e
reation of a shadow pro
ess involves
reation of a
opy-on-write map, the
ost is proportionalto the size of the memory o

upied by the pro
ess. Sim-ilarly, the
ost to dis
ard or replay a shadow is propor-tional to the size of memory modi�ed by the pro
ess.The
osts of dis
ard (replay) are also dire
tly pro-portional to the number of pages in the
orresponding
he
kpointed state (the
urrent state). This is be
auseboth dis
ard and replay involve deletion of one
opy-on-write map. Our results show that dis
ard and re-play take around 28-2800�s when the entire memoryis read, and between 28-7500�s when the entire datamemory is written. The higher
osts in the latter
aseare be
ause the kernel has to return a large number ofpage frames to its free memory list when the shadowstate is dropped/reinstated. Typi
al appli
ations will of
ourse not modify all pages in their address spa
e be-tween
he
kpoints, and so the
osts of the dis
ard andreplay operations will be
loser to the lower end of therange shown in Figure 4(b).An important obje
tive of our rollba
k infrastru
-ture is to have minimal impa
t on normal appli
a-tion performan
e. We therefore
onsider the data for
he
kpoint() and dis
ard() more important thanthat for replay(). This is be
ause the latter is invokedonly when errors o

ur, and will therefore not be partof
ommon-
ase behavior. Regardless, the overhead im-posed by the rollba
k
all is as low as that for shadowstate release. This is promising sin
e it indi
ates we
anrestore exe
ution state as fast as
ommon
ase
he
k-point dis
ard.6.2 Overhead due to LoggingIn order to evaluate the logging overhead, we wrote asimple test program that employs two threads in orderto isolate the impa
t of the logging overhead. In theprogram, the parent thread forks and
reates a
hild. Itthen loads the rules for logging into the framework andnoti�es the
hild to begin invoking system
alls. Therules allow the kernel to �lter system
all invo
ationsbased on the pro
ess ID of the
hild.While logging system
alls that have side e�e
ts onmemory regions, su
h as read, stat and getso
kopt,Flashba
k also needs to re
ord the
ontents of the bu�er

0

100

200

300

400

500

600

700

800

900

T
im

e
(m

ic
ro

se
co

nd
s)

Checkpoint Discard Replay

min
max
average

0

1000

2000

3000

4000

5000

6000

7000

8000

3 3.5 4 4.5 5 5.5 6 6.5 7

T
im

e
(m

ic
ro

se
co

nd
s)

logbase10 (0.25 * Data Size in Bytes)

Variation of system call latency with size of process data memory
checkpoint

write n discard
write n replay

read n release
read n replay

(a) Data Size 40 MB Completely over-written (b) Data Sizes ranging from 4KB to 400MBFigure 4: Mi
roben
hmark Results for Shadow Pro
ess Creation at di�erent sizes of pro
ess data memory
 0

 2000

 4000

 6000

 8000

 10000

 12000

 0 5 10 15 20 25 30

R
es

po
ns

e
T

im
e

(m
ic

ro
se

co
nd

s)

Number of system calls

Without logging
With logging

 0

 2000

 4000

 6000

 8000

 10000

 12000

 0 5 10 15 20 25 30

R
es

po
ns

e
T

im
e

(m
ic

ro
se

co
nd

s)

Number of system calls

Without logging
With logging

(a) Bu�er-
opying (BC) (b) No-
opying (NC)Figure 5: Response time overhead (mi
rose
onds) for varying number of system
all invo
ationsor stru
ture. Thus, with regard to logging overhead,there are two groups of system
alls, those that
auseside e�e
ts on some memory regions, and those thatsimply return a value after performing the intended a
-tion. We refer to the �rst
lass of system
alls as bu�er-
opying (BC) and the se
ond group as no-
opying (NC).For NC system
alls, there is no need to re
ord the
on-tents of bu�ers; just the system
all ID and the returnvalues will suÆ
e.To study the overhead on every system
all due to hi-ja
king and logging, we invoked the read and write sys-tem
alls several times, gradually in
reasing the numberof invo
ations. In ea
h invo
ation, the number of bytesread or written is 4 KB. For ea
h run, we start with a
lean �le
a
he in order to make the e�e
t of
a
hingon system
all overheads
onsistent. Figures 5 showsthe overhead imposed by the sandbox me
hanism. Theoverhead due to sandboxing o

urs be
ause of the extraindire
tion of system
alls imposed by Flashba
k. In-stead of being handled dire
tly by the system
all han-dlers, system
all requests need to pass through �ltersand the logging me
hanism. The in
rease in overheadis linear with the number of system
alls for both thesystem
alls. The di�eren
e in slope between the twolines on the graphs represents the extra per-system-
alloverhead imposed due to logging. This is around 30 mi-
rose
onds on an average.To evaluate the e�e
t that the
opying of bu�ers hason the logging overheads, we invoked the read and write

system
alls repeatedly, gradually in
reasing the num-ber of bytes read or written from 4 KB to 2 MB. Thea
tual number of system
alls is small in this
ase. Fig-ure 6 shows the overhead while varying the amount ofdata read or written. The overhead for BC and NC sys-tem
alls is
omparable, and the extra
opying of bu�ersdoes not appear to impose any extra overhead. This isbe
ause the
ontents of the log are bu�ered, and writ-ten to disk asyn
hronously. In these experiments, thedisk
a
he was warmed sin
e all the data for the �leswas prefet
hed before the a
tual exe
ution. The valuestherefore re
e
t reads and writes entirely involving the
a
he only.
 0

 100

 200

 300

 400

 500

 600

 700

 4500 5000 5500 6000 6500 7000 7500 8000 8500 9000

Lo
g

F
ile

 S
iz

e(
K

B
)

Number of system calls

Reads
Writes

Figure 7: Size of the log �le (KB) for varying number of system
all invo
ationsFigure 7 shows the spa
e overhead be
ause of logging

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 0 100 200 300 400 500
R

es
po

ns
e

T
im

e
(m

ic
ro

se
co

nd
s)

Amount of data read (*4KB)

With logging
Without logging

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 0 100 200 300 400 500

R
es

po
ns

e
T

im
e

(m
ic

ro
se

co
nd

s)

Amount of data written (*4KB)

With logging
Without logging

(a) Bu�er-
opying (BC) (b) No-
opying (NC)Figure 6: Response time overhead (mi
rose
onds) for varying sizes of memory loggingBC and NC
alls. As expe
ted, the growth in the sizeof the log �le is linear in terms of the number of system
alls, though the slope is greater for BC sin
e more datais written ea
h time.6.3 Appli
ation ResultsIn order to test our implementation of state-
apture ina realisti
 environment, we measure the performan
ewith the well-known Apa
he web-server. We evaluatethe system overhead for both multipro
ess version andmultithread version of Apa
he. Our evaluation serves todemonstrate two things: �rst, that �ne-grained rollba
ksupport is possible, and
an be applied to real appli-
ations; and se
ond, that the performan
e impa
t on
ommon-
ase exe
ution is minimal.In all the experiments reported herein, the web serveris bottle-ne
ked by the network and is serving data atfull network throughput of 100Mbps. We use these ex-periments to show that o�-the-shelf ma
hines(1.8MHz,512MB RAM) have enough spare
pu
y
les to provide�ne-grained rollba
k without a�e
ting
lient's per
eivedperforman
e. The server is
he
kpointed multiple times(typi
ally thri
e) during the pro
essing of ea
h request.We essentially
reate a
he
kpoint just before readingthe HTTP request o� a newly a

epted so
ket, beforepro
essing a valid HTTP request from an existing
on-ne
tion and before writing out the HTTP response ontothe so
ket. Thus, at any point of time, Flashba
k main-tains as many shadow images as the total number ofrequests being pro
essed by the server. All data pointsin this se
tion have been averaged over three runs.The Apa
he server
an be
on�gured to run in a mul-tipro
ess or multithread mode. In the former, Apa
hemaintains a pool of worker pro
esses to servi
e requests.Ea
h worker pro
ess is a single thread and the number ofworkers in the pool is adapted dynami
ally based on loadestimates. However, in the latter, Apa
he uses a mu
hsmaller pool of worker pro
esses, with ea
h worker pro-
ess
onsisting of multiple threads implemented by thepthread pa
kage. We present here performan
e �guresfor both
on�gurations of the Apa
he server. In thisexperiment, the web server
he
kpoints its state uponthe arrival of request for a page, pro
esses the request,

and dis
ards the
he
kpoint. These results re
e
t theoverhead of
apturing state. Sin
e Flashba
k
urrentlydoes not support replay of multithreaded exe
ution andshared memory, we disabled logging for replay duringthese experiments.To exer
ise the web server, we use an http request-generating
lient appli
ation, WebStone [73℄, whi
hsends ba
k-to-ba
k requests to a single web server. Ea
hrequest
onstitutes a fet
h of a single �le, randomly se-le
ted from a pre-de�ned \working set". The working set
omprised �les of sizes varying between 5KB and 5MB,but the majority of requests
onstituted a fet
h of 5KB.The request generating appli
ation forks a pre-de�nednumber of
lient pro
esses, ea
h of whi
h submits a se-ries of random requests to the web server. The serverwas run on a o�-the-shelf 1.8GHz Pentium IV ma
hine,
onne
ted to the
lient via a 100Mbps LAN. Perfor-man
e was measured in terms of throughput, aggregateresponse time and load on the server CPU. In all theexperiments reported here, the server was operating atthe full network throughput of 100Mbps.We
ompare the Apa
he web-server on the prototypesystem with a baseline system running the original ver-sion of Linux. Figure 8 shows throughput and responsetime in Flashba
k and the baseline system with Apa
herunning in multipro
ess mode. It is
lear from thegraphs that there is no signi�
ant di�eren
e between the
lient-per
eived throughput and response time. Whenthe number of
lients is small, Flashba
k has 10% lowerthroughput, even though the average response time isthe same as the baseline system. However, when thenumber of
lients in
reases, the di�eren
e between base-line and Flashba
k disappears. In some
ases, Flash-ba
k performs even better than the baseline system. We
onsider these small di�eren
es well within expe
ted ex-perimental varian
e, and
on
lude that the impa
t ofrollba
k support on Apa
he performan
e is negligible.Figure 9 shows the results for the multithread ver-sion of Apa
he. As expe
ted, the overheads imposed byFlashba
k on multithreaded exe
ution are slightly lowerthan those for the multipro
ess version, eviden
ed bythe throughput �gures whi
h more
losely mat
h oneanother in most
ases. This lower overhead is a dire
tresult of fewer e�e
tive system
alls, be
ause when one

9.5e+06

1e+07

1.05e+07

1.1e+07

1.15e+07

1.2e+07

1.25e+07

1.3e+07

0 20 40 60 80 100 120 140 160

T
hr

ou
gh

pu
t i

n
B

ps
Number of clients

Baseline
With rollback support

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0 20 40 60 80 100 120 140 160

R
es

po
ns

e
tim

e
in

 s
ec

on
ds

Number of clients

Baseline
With rollback support

(a) Throughput (b) Response timeFigure 8: Throughput and response time with Multipro
ess Apa
he web-server. Baseline
orresponds to the
ase running in thedefault Linux system without rollba
k support, and With rollba
k support
orresponds to the Linux kernel modi�ed to in
lude rollba
ksupport. The results shown in these �gures indi
ate that throughput and response time are not a�e
ted by Flashba
k. These timesre
e
t state-
apture overhead
9.5e+06

1e+07

1.05e+07

1.1e+07

1.15e+07

1.2e+07

1.25e+07

1.3e+07

0 20 40 60 80 100 120 140 160

T
hr

ou
gh

pu
t i

n
B

ps

Number of clients

Baseline
With rollback support

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0 20 40 60 80 100 120 140 160

R
es

po
ns

e
tim

e
in

 s
ec

on
ds

Number of clients

Baseline
With rollback support

(a) Throughput (b) Response timeFigure 9: Throughput and response time with multithread Apa
he web-server. The results shown in these �gures indi
ate thatthroughput and response time are not a�e
ted by Flashba
k. These times re
e
t state-
apture overhead
0

1

2

3

4

5

6

0 20 40 60 80 100 120 140 160

C
P

U
 1

-m
in

ut
e

lo
ad

 a
ve

ra
ge

Number of clients

Baseline
With rollback support

0

1

2

3

4

5

6

0 20 40 60 80 100 120 140 160

C
P

U
 1

-m
in

ut
e

lo
ad

 a
ve

ra
ge

Number of clients

Baseline
With rollback support

(a) Multipro
ess (b) MultithreadFigure 10: One-minute CPU load averages for the host on whi
h the Apa
he web-server is running. The
urves demonstrate theextra work being performed by the kernel when
he
kpointing is enabled.thread undergoes a
apture event, the state of all theother threads is automati
ally
aptured. Subsequent
apture-events on the other threads of this pro
ess aretreated as nops during the lifetime of this shadow pro-
ess. Hen
e the number of
apture events ne
essary aremu
h fewer.Although
lient-per
eived system performan
e re-mains almost una�e
ted, the kernel does perform extrawork ea
h time a
he
kpoint is initiated. Of
ourse, thisdoes not
ome for free. To quantify the
ost, we moni-tored CPU load average on the ma
hine hosting the web-server. The metri
 we use measures the average num-ber of pro
esses waiting on the run queue over the lastminute, whi
h is an estimate of system load as it statis-
ti
ally
aptures the amount of time ea
h pro
ess spendson the run queue. Figure 10 plots these results for themultipro
ess and multithread versions. The graphs ex-pose the overhead in
apturing shadow state, whi
h inour evaluation o

urs very frequently (on
e every requestre
eived by the server). Note that even though the
puutilization of the server in
reases by 2-4 times, the
lientper
eived performan
e, in both data bytes delivered andtime to respond, remains un
hanged. We assert that theexperimental setup is realisti
 as modern web-servers areoften
onstrained by network bandwidth and have spare
pu
y
les.In both the multipro
ess and multithread
on�gura-tions, CPU load in
reases signi�
antly. In the single-

threaded
ase, the extra load is quite high. This is be-
ause a multipro
ess Apa
he webserver uses a
olle
tionof separate Unix pro
esses to handle web requests, ea
hof whi
h now
aptures shadow state when handling arequest. In the multithreaded version, the state-
aptureevent o

urs on
e for all threads of exe
ution, be
ausewe
apture the state of all threads, en masse, ea
h time a
he
kpoint is taken. The smaller number of system
alls,and the smaller size of the state
aptured (per workerthread), together
ontribute to the multithread
on�gu-ration exhibiting better CPU load than the multipro
ess
on�guration.7 Using Flashba
k in gdbUsing Flashba
k, it is fairly straightforward to in
orpo-rate support for
he
kpointing, rollba
k and determinis-ti
 replay into a debugging utility su
h as gdb.We have modi�ed gdb to support three new
om-mands {
he
kpoint, rollba
k, and dis
ard, for
reating
he
kpoints, to support rollba
k and deterministi
 re-play of debugged programs. Programmers
an set upbreakpoints at pla
es where they might want to
reate
he
kpoints. At these breakpoints, after seeing the stateof the program, they
an
hoose to
reate a new
he
k-point by using the
he
kpoint
ommand. They
an alsodis
ard earlier
he
kpoints, thereby freeing system re-sour
es asso
iated with those
he
kpoints by using thedis
ard
ommand. If they �nd the system state to bein
onsistent, they
an roll ba
k to an earlier
he
kpointby using the rollba
k
ommand.Using Flashba
k, gdb
an be made to automati
allytake periodi

he
kpoints of the state of the pro
ess be-ing exe
uting. New
ommands are added into the de-bugger user interfa
e to allow programmers to enable ordisable automati

he
kpointing during exe
ution of thedebugged program. Programmers also have
ontrol overthe frequen
y of
he
kpointing. This frees the program-mer from having to insert breakpoints at appropriatelo
ations in the
ode and expli
itly taking
he
kpoints.In order to in
orporate
he
kpoints into gdb, we made
hanges to the target system handling
omponent andthe user interfa
e
omponents. The target system han-dling
omponent handles the basi
 operations dealingwith the a
tual exe
ution
ontrol of the program, sta
kframe analysis and physi
al target manipulation. This
omponent handles software breakpoint requests by re-pla
ing a program exe
ution with a trap. During ex-e
ution, the trap
auses an ex
eption whi
h gives
on-trol to gdb. The user
an
hoose to take a
he
kpointat this time. gdb does this by making a
he
kpointsystem
all passing the pro
ess ID of the pro
ess beingdebugged. Similarly, for rollba
k and replay, gdb usesthe rollba
k and replay system
alls respe
tively.For automati

he
kpointing, in addition to these
hanges, gdb maintains a timer that keeps tra
k of timesin
e the last
he
kpoint. The timeout for the timer
anbe set by the user. When a timeout o

urs, gdb
he
k-

points the pro
ess.8 Con
lusions and Future WorkIn this paper we presented a lightweight OS extension
alled Flashba
k to support �ne-grained rollba
k and de-terministi
 replay for the purpose of software debugging.Flashba
k uses shadow pro
ess to eÆ
iently
apture in-memory states of a pro
ess at di�erent exe
ution points.To support deterministi
 reply, Flashba
k logs all inter-a
tions of the debugged program with the exe
ution en-vironment. Results from our prototype implementationon real systems show that our approa
h has small over-heads and
an roll ba
k programs qui
kly.Besides software debugging, our system
an also beused to improve software availability by progressivelyrolling ba
k and re-exe
uting to avoid transient er-rors [78℄. In addition, our approa
h
an be extendedto provide lightweight transa
tion models that requireonly atomi
ity but not persisten
e.We are in the pro
ess of
ombining Flashba
k withhardware ar
hite
ture support for rollba
k and deter-ministi
 replay [56℄ to further redu
e overhead. Weare also evaluating Flashba
k with more appli
ations.Flashba
k
urrently only works for programs that runon a single ma
hine. We are exploring ways to extend itto support distributed
lient-server appli
ations by
om-bining with te
hniques surveyed by Elnozahy et al. [18℄.Flashba
k in
luding the pat
hes to both Linux andgdb will be released to the open sour
e
ommunity sothat other resear
hers/developers
an take advantage ofFlashba
k in intera
tive debugging.9 A
knowledgmentsWe would like to thank Dr Srinivasan Seshan, the shep-ard for the paper, for useful suggestions and
omments.We also thank the anonymous reviewers for useful feed-ba
k, and the Opera group for useful dis
ussions, and Ja-gadeesan Sundaresan, Pierre Salverda and Arijit Ghoshfor their
ontribution to the proje
t.REFERENCES[1℄ S. V. Adve, M. D. Hill, B. P. Miller, and R. H. B. Netzer. De-te
ting Data Ra
es onWeak Memory Systems. In Pro
eedingsof the 18th Annual International Symposium on ComputerAr
hite
ture, pages 234{243, 1991.[2℄ Alvisi and Marzullo. Trade-o�s in implementing
ausal mes-sage logging proto
ols. In PODC: 15th ACM SIGACT-SIGOPS Symposium on Prin
iples of Distributed Comput-ing, 1996.[3℄ C. Amza, A. Cox, and W. Zwaenepoel. Data repli
ationstrategies for fault toleran
e and availability on
ommodity
lusters. Pro
. of the International Conferen
e on DependableSystems and Networks., 2000.[4℄ A. Bobbio and M. Sereno. Fine grained software rejuvenationmodels. In IEEE International Computer Performan
e andDependability Symposium, 1998.

[5℄ A. Borg, J. Baumba
h, and S. Glazer. A message systemsupporting fault toleran
e. In Pro
eedings of the 9th ACMSymposium on Operating Systems Prin
iples (SOSP), vol-ume 17, pages 90{99, 1983.[6℄ A. Borg, W. Blau, W. Graets
h, F. Herrmann, andW. Oberle. Fault toleran
e under UNIX. ACM Transa
tionson Computer Systems, 7(1):1{24, Feb. 1989.[7℄ C. Boyapati, R. Lee, and M. Rinard. Ownership types forsafe programming: Preventing data ra
es and deadlo
ks. InObje
t-Oriented Programming, Systems, Languages, and Ap-pli
ations (OOPSLA), November 2002.[8℄ G. Candea and A. Fox. Crashonly software. In Pro
eedingsof the 9th Workshop on Hot Topi
s in Operating Systems,May 2003.[9℄ M. Castro and B. Liskov. Proa
tive re
overy in a byzantine-fault-tolerant system. In OSDI, 2000.[10℄ P. M. Chen, D. E. Lowell, and G. W. Dunlap. Dis
ount
he
k-ing: Transparent, low-overhead re
overy for general appli
a-tions. Te
hni
al report, University of Mi
higan, Departmentof Ele
tri
al Engineering and Computer S
ien
e, July 1998.[11℄ P. M. Chen, W. T. Ng, S. Chandra, C. Ay
o
k, G. Rajamani,and D. Lowell. The Rio �le
a
he: Surviving operating sys-tems
rashes. In Seventh International Conferen
e on Ar
hi-te
tural Support for Programming Languages and OperatingSystems, pages 74{83, Cambridge, Massa
husetts, 1{5 O
t.1996. ACM Press.[12℄ Y. Chen, J. S. Plank, and K. Li. Clip: a
he
kpointing toolfor message-passing parallel programs. In Pro
eedings of the1997 ACM/IEEE
onferen
e on Super
omputing (CDROM),pages 1{11. ACM Press, 1997.[13℄ J. Choi and H. Srinivasan. Deterministi
 replay of java mul-tithreaded appli
ations. In Pro
eedings of the SIGMETRICSSymposium on Parallel and Distributed Tools, pages 48{59,Aug. 1998.[14℄ J.-D. Choi and S. L. Min. Ra
e Frontier: Reprodu
ing DataRa
es in Parallel-Program Debugging. In Pro
eedings of theThird ACM SIGPLAN Symposium on Prin
iples & Pra
ti
eof Parallel Programming, pages 145{154, 1991.[15℄ K. D. Cooper, M. W. Hall, R. T. Hood, K. Kennedy, K. S.M
Kinley, J. M. Mellor-Crummey, L. Tor
zon, and S. K.Warren. The ParaS
ope Parallel Programming Environment.Pro
eedings of the IEEE, 81(2):244{263, 1993.[16℄ O. P. Damani and V. K. Garg. How to re
over eÆ
ientlyand asyn
hronously when optimism fails. In InternationalConferen
e on Distributed Computing Systems, pages 108{115, 1996.[17℄ G. W. Dunlap, S. T. Kind, S. Cinar, M. A. Basrai, and P. M.Chen. Revirt: enabling intrusion analysis through virtual-ma
hine logging and replay. ACM SIGOPS Operating Sys-tems Review, 35(SI):211{224, 2002.[18℄ E. N. M. Elnozahy, L. Alvisi, Y. Wang, and D. B. Johnson.A survey of rollba
k-re
overy proto
ols in message-passingsystems. ACM Computing Surveys (CSUR), 34(3):375{408,2002.[19℄ D. R. Engler, D. Y. Chen, and A. Chou. Bugs as in
onsistentbehavior: A general approa
h to inferring errors in systems
ode. In Symposium on Operating Systems Prin
iples, pages57{72, 2001.[20℄ D. Evans, J. Guttag, J. Horning, and Y. M. Tan. L
lint: Atool for using spe
i�
ations to
he
k
ode. In Symposium onthe Foundations of Software Engineering, De
ember 1994.[21℄ D. Evans and D. Laro
helle. Improving se
urity using exten-sible lightweight stati
 analysis. IEEE Software, 19(1):42{51,/2002.[22℄ S. Feldman and C. Brown. Igor: A system for program de-bugging via reversible exe
ution. ACM SIGPLAN Noti
es,Workshop on Parallel and Distributed Debugging, 24(1):112{123, Jan. 1989.

[23℄ C. Flanagan and S. N. Freund. Type-based ra
e dete
tion forJava. ACM SIGPLAN Noti
es, 35(5):219{232, 2000.[24℄ C. Flanagan, K. Leino, M. Lillibridge, C. Nelson, J. Saxe,and R. Stata. Extended stati

he
king for java. In PLDI,2002.[25℄ G. Candea et. al. Redu
ing re
overy time in a small re
ur-sively restartable system. In DSN, 2002.[26℄ K. Ghara
horloo and P. B. gibbons. Dete
ting Violations ofSequential Consisten
y. In Pro
eedings of the Third AnnualACM Symposium on Parallel Algorithms and Ar
hite
tures,pages 316{326, 1991.[27℄ S. Hallem, B. Chelf, Y. Xie, and D. Engler. A system andlanguage for building system-spe
i�
, stati
 analyses. In Pro-
eeding of the ACM SIGPLAN 2002 Conferen
e on Program-ming language design and implementation (PLDI), 2002.[28℄ S. Hangal and M. S. Lam. Tra
king down software bugs usingautomati
 anomaly dete
tion. In Pro
. 2002 Int. Conf. Soft-ware Engineering, pages 291{301, Orlando, FL, May 2002.[29℄ R. Haskin, Y. Mala
hi, and G. Chan. Re
overy manage-ment in qui
ksilver. ACM Transa
tions on Computer Sys-tems (TOCS), 6(1):82{108, 1988.[30℄ R. Hastings and B. Joy
e. Purify: Fast dete
tion of memoryleaks and a

ess errors. In the Winter USENIX, 1992.[31℄ K. Havelund and T. Pressburger. Model
he
king java pro-grams using java path�nder, 1998.[32℄ Y. Huang, C. Kintala, N. Kolettis, and N. Fulton. Softwarerejuvenation: analysis, module and appli
ations. In FTCS-25, 1995.[33℄ Y. Huang and Y. Wang. Why optimisti
 message logginghas not been used in tele
ommuni
ation systems. In Pro
eed-ings of the 1995 International Symposium on Fault-TolerantComputing (FTCS), pages 459{463, june 1995.[34℄ D. Johnson and W. Zwaenepoel. Re
overy in distributedsystems using optimisti
 message logging and
he
kpointing.In Pro
eedings of the Seventh Annual ACM Symposium onPrin
iples of Distributed Computing, pages 171{181, Aug.1988.[35℄ KAI-Intel Corporation. Assure. URL: http: //devel-oper.intel.
om/software/produ
ts/assure/.[36℄ S. Kumar and K. Li. Using model
he
king to debug networkinterfa
e �rmware. In the Fifth Symposium on OperatingSystems Design and Implementation (OSDI), 2002.[37℄ K. Li, J. Naughton, and J. Plank. Con
urrent real-time
he
k-point for parallel programs. In Se
ond ACM SIGPLAN Sym-posium on Prin
iples and Pra
ti
e of Parallel Programming,pages 79{88, Seattle, Washington, Mar. 1990.[38℄ K. Li, J. Naughton, and J. Plank. An eÆ
ient
he
kpointingmethod for multi
omputers with wormhole routing. Interna-tional Journal of Parallel Programming, 20(3):159{180, June1991.[39℄ K. Li, J. Naughton, and J. Plank. Low-laten
y
on
urrent
he
kpoint for parallel programs. IEEE Transa
tions on Par-allel and Distributed Computing, 1994.[40℄ B. Liskov. Distributed programming in argus. Communi
a-tions of the ACM, 31(3):300{312, Mar
h 1988.[41℄ A. Loginov, S. H. Yong, S. Horwitz, and T. W. Reps. Debug-ging via run-time type
he
king. In Fundamental Approa
hesto Software Engineering, pages 217{232, 2001.[42℄ D. E. Lowell, S. Chandra, and P. M. Chen. Exploring failuretransparen
y and limits of generi
 re
overy. In OSDI, 2000.[43℄ D. E. Lowell and P. M. Chen. Free transa
tions with RioVista. In Pro
eedings of the 16th Symposium on Operat-ing Systems Prin
iples (SOSP-97), volume 31,5 of OperatingSystems Review, pages 92{101, New York, O
t.5{8 1997.ACM Press.[44℄ M. Luj�an, J. R. Gurd, T. L. Freeman, and J. Miguel. Elimi-nation of Java array bounds
he
ks in the presen
e of indire
-tion. In Pro
eedings of the Joint ACM Java Grande-Is
opeConferen
e, pages 76{85, 2002.

[45℄ E. Mar
us and H. Stern. Blueprints for high availablity. JohnWilley and Sons, 2000.[46℄ J. M. Mellor-Crummey and M. L. S
ott. Syn
hronizationwithout
ontention. In Pro
eedings of The 4th InternationalConferen
e on Ar
hite
tural Support for Programming Lan-guages and Operating Systems, pages 269{278, Apr. 1991.[47℄ S. L. Min and J.-D. Choi. An EÆ
ient Ca
he-based A

essAnomaly Dete
tion S
heme. In Pro
eedings of the FourthInternational Conferen
e on Ar
hite
tural Support for Pro-gramming Languages and Operating Systems, pages 235{244,1991.[48℄ National Institute of Standards and Te
hnlogy (NIST), De-partment of Commer
e. Software errors
ost u.s. e
onomy$59.5 billion annually. NIST News Release 2002-10, 2002.[49℄ G. C. Ne
ula, S. M
Peak, and W. Weimer. CCured: type-safe retro�tting of lega
y
ode. In Symposium on Prin
iplesof Programming Languages, pages 128{139, 2002.[50℄ R. H. B. Netzer. Optimal tra
ing and replay for debuggingshared-memory parallel programs. In PADD, 1993.[51℄ J. Oplinger and M. S. Lam. Enhan
ing software reliabilitywith spe
ulative threads, O
tober 2002.[52℄ D. A. Patterson and et. al. Re
overy-oriented
omputing(ro
): Motivation, de�nition, te
hniques, and
ase studies.UC Berkeley CS Te
h. Report,UCB//CSD-02-1175, 2002.[53℄ D. Perkovi
 and P. J. Keleher. A Proto
ol-Centri
 Approa
hto on-the-Fly Ra
e Dete
tion. IEEE Transa
tions on Paralleland Distributed Systems, 11(10):1058{1072, 2000.[54℄ J. S. Plank, K. Li, and M. A. Puening. Diskless
he
kpoint-ing. IEEE Transa
tions on Parallel and Distributed Systems,9(10):972{??, 1998.[55℄ M. Prvulovi
 and J. Torrellas. Reena
t: using thread-levelspe
ulation me
hanisms to debug data ra
es in multithreaded
odes. In Pro
eedings of the 30th Annual Symposium onComputer Ar
hite
ture, 2003.[56℄ M. Prvulovi
 and J. Torrellas. ReEna
t: Using Thread-Level Spe
ulation to Debug Software; An Appli
ation to DataRa
es in Multithreaded Codes. In Pro
eedings of the 30thAnnual International Symposium on Computer Ar
hite
ture(ISCA), June 2003.[57℄ R. Rodrigues, M. Castro, and B. Liskov. BASE: Usingabstra
tion to improve fault toleran
e. In Pro
eedings ofthe 18th ACM Symposium on Operating System Prin
iples,pages 15{28, Ban�, Canada, O
t. 2001.[58℄ M. Ronsse and K. D. Boss
here. Re
Play: a Fully Inte-grated Pra
ti
al Re
ord/Replay System. ACM Transa
tionson Computer Systems, 17(2):133{152, 1999.[59℄ M. Russinovi
h and B. Cogswell. Replay for
on
urrent non-deterministi
 shared-memory appli
ations. In Pro
eedings ofthe ACM SIGPLAN 1996
onferen
e on Programming lan-guage design and implementation, pages 258{266, Jerusalem,Israel, 1996. ACM Press.[60℄ Y. Saito and B. Bershad. A transa
tional memory servi
e inan extensible operating system. In USENIX Annual Te
hni-
al Conferen
e, 1998.[61℄ K. Salem and H. Gar
ia-Molina. Che
kpointing memory-resident databases. Te
hni
al Report CS-TR-126-87, Depart-ment of Computer S
ien
e, Prin
eton University, 1987.[62℄ M. Satyanarayanan, H. Mashburn, P. Kumar, D. Steere, andJ. Kistler. Lightweight re
overable virtual memory. In SOSP,1993.[63℄ S. Savage, M. Burrows, G. Nelson, P. Sobalvarro, and T. An-derson. Eraser: A dynami
 data ra
e dete
tor for multi-threaded programs. ACM Transa
tions on Computer Sys-tems, 15(4):391{411, 1997.

[64℄ E. S
honberg. On-the-
y dete
tion of a

ess anomalies. InACM SIGPLAN '89 Conferen
e on Programming LanguageDesign and Implementation (PLDI), June 1989.[65℄ M. Seltzer, Y. Endo, and C. Small. Dealing with disaster:Surviving misbehaved kernel extensions. In OSDI, 1996.[66℄ J. H. Slye and E. N. Elnozahy. Supporting nondeterministi
exe
ution in fault-tolerant systems. In Pro
eedings of theTwenty-Sixth International Symposium on Fault-TolerantComputing, pages 250{261, Washington, June25{27 1996.IEEE.[67℄ S. W. Smith, D. B. Johnson, and J. D. Tygar. Completelyasyn
hronous optimisti
 re
overy with minimal rollba
ks. InFTCS-25: 25th International Symposium on Fault TolerantComputing Digest of Papers, pages 361{371, Pasadena, Cal-ifornia, 1995.[68℄ N. Sterling. Warlo
k: A stati
 data ra
e analysis tool. InUSENIX Winter Te
hni
al Conferen
e, 1993.[69℄ J. M. Stone. Debugging
on
urrent pro
esses: A
ase study.In ACM SIGPLAN Conferen
e on Programming LanguageDesign and Implementation (PLDI), June 1988.[70℄ R. E. Strom and S. A. Yemini. Optimisti
 re
overy in dis-tributed systems. ACM Transa
tions on Computer Systems,3(3):204{226, Aug. 1985.[71℄ sys
alltra
k software home page athttp://sys
alltra
k.sour
eforge.net/how.html.[72℄ C. A. Thekkath and H. M. Levy. Hardware and softwaresupport for eÆ
ient ex
eption handling. In ASPLOS, 1994.[73℄ G. Trent and M. Sake. Webstone: The �rst generation inhttp server ben
hmarking. Feb 1995.[74℄ C. v. Praun and T. Gross. Obje
t ra
e dete
tion. In 16thAnnual Conferen
e on Obje
t-Oriented Programming, Sys-tems, Languages, and Appli
ations (OOPSLA), Tampa Bay,FL, O
tober 2001.[75℄ D. Wagner and D. Dean. Intrusion dete
tion via stati
 anal-ysis. In IEEE Symposium on Se
urity and Priva
y, pages156{169, 2001.[76℄ D. Wagner, J. Foster, E. Brewer, and A. Aiken. A �rst steptowards automated dete
tion of bu�er overrun vulnerabili-ties. In Network and Distributed System Se
urity Symposium,pages 3{17, San Diego, CA, February 2000.[77℄ Y. Wang, P. Y. Chung, Y. Huang, and E. N. Elnozahy. Inte-grating
he
kpointing with transa
tion pro
essing. In FTCS,1997.[78℄ Y. Wang, Y. Huang, W. K. Fu
hs, C. Kintala, and G. Suri.Progressive retry for software failure re
overy in message-passing appli
ations. IEEE Transa
tions on Computers,46(10):1137{1141, O
t 1997.[79℄ Y. Wang, Y. Huang, K.-P. Vo, P.-Y. Chung, and C. Kintala.Che
kpointing and its appli
ations. In FTCS-25, 1995.[80℄ M. Wu and W. Zwaenepoel. eNVy: A non-volatile, mainmemory storage system. In Pro
eedings of the Sixth Inter-national Conferen
e on Ar
hite
tural Support for Program-ming Languages and Operating Systems, pages 86{97, SanJose, California, O
t. 4{7, 1994. ACM SIGARCH, SIGOPS,SIGPLAN, and the IEEE Computer So
iety.[81℄ Y. Xie and D. Engler. Using redundan
ies to �nd errors.In Pro
eedings of the tenth ACM SIGSOFT symposium onFoundations of software engineering, pages 51{60, 2002.[82℄ Y. Zhou, P. M. Chen, and K. Li. Fast
luster failover usingvirtual memory-mapped
ommuni
ation. In the 13th ACMInternational Conferen
e on Super
omputing, June 1999.

