
Virtual Servers and Checkpoint/Restart in Mainstream
Linux

Sukadev Bhattiprolu
IBM

sukadev@us.ibm.com

Eric W. Biederman
Arastra

ebiederm@xmission.com

Serge Hallyn
IBM

serue@us.ibm.com
Daniel Lezcano

IBM
dlezcano@fr.ibm.com

ABSTRACT
Virtual private servers and application checkpoint and restart
are two advanced operating system features which place dif-
ferent but related requirements on the way kernel-provided
resources are accessed by userspace. In Linux, kernel re-
sources, such as process IDs and SYSV shared messages,
have traditionally been identified using global tables. Since
2005, these tables have gradually been transformed into per-
process namespaces in order to support both resource avail-
ability on application restart and virtual private server func-
tionality. Due to inherent differences in the resources them-
selves, the semantics of namespace cloning differ for many
of the resources. This paper describes the existing and pro-
posed namespaces as well as their uses.

Categories and Subject Descriptors
C.5.5 [COMPUTER SYSTEM IMPLEMENTATION]:
Security
; B.8.1 [PERFORMANCE AND RELIABILITY]: Re-
liability, Testing, and Fault-Tolerance

General Terms
Reliability, Security

Keywords
Survivability, Reliability, Security, Checkpoint, Restart, Mo-
bility, Virtualization

1. INTRODUCTION
A namespace is a fundamental concept in computer sci-

ence. An instance of a namespace serves as a dictionary.
Looking up a name, if the name is defined, will return a cor-
responding item. In this sense, of course, kernel-provided
resources have always been namespaces. For instance, mul-
tiple process ID or pid, tables can co-exist in the system but

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 200X ACM X-XXXXX-XX-X/XX/XX ...$5.00.

one task will use one table to look for a task corresponding
to a specific pid, in other word this table is relative to the
task.

For the past several years, we have been converting kernel-
provided resource namespaces in Linux from a single, global
table per resource, to Plan9-esque [31] per-process names-
paces for each resource. This conversion has enjoyed the for-
tune of being deemed by many in the Linux kernel develop-
ment community as a general code improvement; a cleanup
worth doing for its own sake. This perception was a tremen-
dous help in pushing for patches to be accepted. But there
are two additional desirable features which motivated the
authors. The first feature is the implementation of virtual
private servers (VPS). The second is application checkpoint
and restart (ACR) functionality.

This paper is the first to present recent work in the Linux
kernel which builds an infrastructure for supporting VPS
and ACR. The remainder of this introduction will present a
general overview of VPS and ACR. Section 2 will summarize
related work. Section 3 will describe the general namespace
support in Linux and its usage, and detail the semantics of
existing and planned namespaces.

1.1 Virtual Private Servers
Otherwise frequently referred to as jails or containers, vir-

tual private servers (VPS) describe an operating system fea-
ture that isolates and virtualizes the resources used by a set
of processes, so that two VPSs on a single host can be treated
as though they were two separate systems. The consolida-
tion of many VPSs onto a single physical server can provide
significant power and cost savings. The fact that computa-
tional power and memory are not used to emulate hardware
and run many instances of operating systems reduces cost
in terms of power, hardware, and system administration.
The fact that a single operating system serves many VPSs
also eases the sharing of resources among them, such as disk
space for system libraries.

The implementation of VPSs requires resource isolation
between each VPS and the host system, and resource virtu-
alization to allow each VPS the use of the same identifier for
well-known resources. It also requires administrative com-
patibility, so that setting up a VPS is done using the same
tools as setting up a host, and it requires transparency, so
that applications can run unmodified on a VPS. The re-
quirements for compatibility and transparency should not
however be interpreted as a requirement that a VPS user
cannot tell that they are using a VPS rather than a host.

While some may consider that a worthwhile goal, it does not
contribute to VPS usability, and has been explicitly rejected
as a goal for Linux VPSs.

Linux now implements per-process namespaces for many
resources. Each process references a set of namespaces (usu-
ally) shared with other processes in the same VPS. When
a task asks, for instance, to send a signal to process 9920,
the kernel will search the signaling task’s pid namespace for
a process known in that namespace as 9920. There may
be many processes known as 9920 in some namespace or
other, but only one task will have that ID in the signaling
task’s namespace. Any task that does not have an ID in the
signaling task’s pid namespace cannot be signaled by that
task [7]. The namespaces thus provide both isolation and
virtualization.

In order to prevent VPS users from subjecting each other
or host users to service denials, resource management is also
needed. Namespaces themselves do not facilitate resource
management. Linux provides resource management through
the cgroups interface [28].

1.2 Application Checkpoint and Restart
ACR allows a running application’s state to be recorded

and later used to create a new instance of the application,
which continues its computation where the original had left
off at the time of the checkpoint. Common uses for this
include migration, i.e. moving an application to a less loaded
server or off a server that will be shut down, and survivability
of application death or either planned or accidental system
shutdown.

One obvious requirement for ACR is the ability to dump
all relevant task data to userspace in the form of a file or
data stream. Another requirement is the ability to recreate
all resources in use by the application, and to do so using
the identifiers by which the application knows them. For
instance, if an application consists of tasks T1 and T2, T1
may have stored the pid for T2 so as to signal it at some
later time. Upon application restart, T2 must be restarted
with the same pid. There must therefore be no other task
already known by T2’s pid.

In Linux, the per-process namespaces can be used to meet
this particular part of the requirement. When the appli-
cation is restarted, it is restarted with a new, most often
empty 1, set of namespaces. This guarantees the availability
of the required resource IDs within the application’s names-
pace.

2. RELATED WORK
The use of virtualization has many motivations [11], in-

cluding resource isolation, hardware resource sharing or server
consolidation, and operating system and software develop-
ment for unavailable hardware. Logical partitioning is strictly
a method of hardware resource sharing, where several dis-
tinct operating systems can be run on a subset of the avail-
able hardware [26, 38]. There are several ways virtual ma-
chines are typically implemented. Full hardware emulation
in software [3] is the slowest but most comprehensive. In
virtualization [20, 18] or para-virtualization [2, 33] much of
the virtual machine is run natively on the host system rather
than being fully emulated, with a smaller piece of software

1Except for hostname and mounts namespaces, where the
concept of resource ID conflicts does not make sense.

called the Virtual Machine Monitor or hypervisor providing
the remaining emulation. Each of these approaches involves
execution of a full operating system for each virtual machine,
incurring large memory and cpu costs.

As pointed out by Price and Tucker [32], when the primary
goal of a virtual machine is to consolidate applications, then
what is mainly needed is the namespace isolation features.
By providing namespace isolation without requiring any in-
struction translation, hardware emulation, or even a private
copy of an operating system for each virtual machine, vir-
tual private servers (VPS) become a more efficient solution.
The correctness of this observation is borne out by the large
number of implementations [37, 19, 32, 35, 36, 41], making a
strong case for the implementation of private namespaces for
kernel-provided resources in the mainstream Linux kernel.

Single System Image (SSI) refer to a distributed operat-
ing system providing the appearance of a single machine
on top of a cluster. An SSI, such as SPRITE [5] or KER-
RIGHED [43], usually transparently migrates jobs between
machines on the underlying cluster to take advantage of idle
machines [27]. MOSIX [1] offered application migration for
VAX and MOTOROLA and then for pentium-class comput-
ers in 1998 for Linux.

In contrast, the use of migration to achieve load-balancing
among a pool of systems can be seen as achieving the benefits
of SSI without the cost of constantly synchronizing resources
to provide the illusion of a single system. ACR technology
has been developed for years. Early ACR implementations
focused on checkpointing the whole system in the case of
power failure or other system shutdown [15]. Later oper-
ating systems such as KEYKOS [22] did the same thing.
FLUKE [8] provided checkpoint of applications or nested
virtual environments in 1996. Commercially, IRIX 6.4 [44]
implemented ACR functionality as specified by the (unrat-
ified) POSIX 1003.1m draft 11 in 1996. In 2002, CRAY
offered UNICOS/mp [16], which was based on IRIX 6.5 and
thus offered the same ACR functionality. Recently IBM has
offered ACR for AIX WPARs [14] These different implemen-
tations demonstrated the validity of the ACR concept and
shown the interest of users, especially from the high perfor-
mance computing world, for this technology.

In Linux, ACR technology has studied several different
approaches: user space approaches [23, 46], fully in-kernel
approaches [41, 21], and mixed user and kernel solutions [6].
The userspace-only solutions were good attempts to examine
how far the technology can go without modifying the kernel,
but the restrictions imposed by this approach are too heavy
[24, 46] to be used by a wide scope of users. In particular,
all the attempts to have the ACR available without mod-
ifying the kernel faced three major problems: identify the
kernel resource to be checkpointed (eg. how to know if an
IPC resource should be checkpointed or not); resolve ker-
nel resource conflict at restart (eg. how to assign a pid to
a process if there is another process in the system with the
same pid); and access the internal kernel data structure so as
to recreate the resource exactly in its original, checkpointed
state.

The namespace work presented here resolves the two first
problems. A checkpoint-able job is spawned with a new,
empty set of namespaces, so that all kernel resources avail-
able to it are in fact worth checkpointing because there are
safely isolated from the rest of the system. A job is also
restarted in a new set of namespaces, so that recreated re-

sources can not conflict with other jobs on the system.
VPS and ACR implementations on Linux have been com-

ing and going for a long time. Current examples of VPS im-
plementations include Linux-VServer [37] and OpenVZ [41].
ACR implementations include Zap [21], MetaCluster [10],
and OpenVZ [41]. By addressing a common need of both
VPS and ACR, a need whose solution must inherently be
very invasive to the core kernel and therefore greatly in-
crease the size of any kernel patch, the namespace work
greatly reduces the amount of work needed to implement
both.

3. NAMESPACE INFRASTRUCTURE
The use of per-process namespaces as an OS concept can

be traced back to Plan9 [31]. Since another, even more
famous, design feature of Plan9 was that “everything is a
file”, it should not be surprising that Plan9 namespaces are
mostly thought of as filesystem namespaces. But whereas in
Plan9 filesystem namespaces suffice to support namespaces
for everything, the same is not true in Linux.

The main design goals and requirements for namespaces
for Linux are:

• Transparency and Compatibility: Applications must
run inside the namespace just as if they are running
on the host system.

• Performance: The namespaces should not introduce
any significant overhead to applications.

• Usability and Administration: Existing utilities and
administrative tools should continue to work both in-
side and outside namespaces.

• Acceptance to main-stream Linux: Overall design and
implementation of namespaces must be homogeneous
with the Linux kernel and not just a customized kernel
or module.

The list of namespaces currently included or being imple-
mented in the Linux kernel includes hostinfo (Section 3.3),
system V IPC (Section 3.4), mounts (Section 3.5), pid (Sec-
tion 3.6), network (Section 3.7), userid (Section 3.8), and
devices (Section 3.9).

3.1 Operations on namespaces: Cloning and
unsharing

In Linux new processes are created using the clone() sys-
tem call. Clone() differs from the traditional fork() system
call in UNIX, in that it allows the parent and child processes
to selectively share or duplicate resources. The resources to
be shared or duplicated are specified in a clone_flags pa-
rameter to the system call. For instance, parent and child
share virtual memory if the CLONE_VM flag is set in the call
to clone(). The process of duplicating resources between
parent and child using the clone() system call is referred
to ”cloning” the resource. While most resources must be
duplicated at the time of process creation, some can be du-
plicated after the child process has been fully created using
the unshare() system call. We use the terms, cloning or
unsharing interchangeably to refer to both operations.

3.2 nsproxy
A task_struct describes an active task in the system.

Rather than provide a pointer to each namespace in every

task_struct, it was decided that a ’namespace proxy’, or
nsproxy, should be referenced from a task_struct. In addi-
tion to space savings due to the presumably numerous tasks
storing only one pointer (to nsproxy) instead of many (to
each namespace), there is also a small performance improve-
ment, since each ordinary task clone required only incre-
menting one reference count for all namespaces.

The process of cloning or unsharing a namespace using the
nsproxy is best explained with the simple, hostinfo names-
pace below.

3.3 Creating namespaces
As each new namespace is introduced into the Linux ker-

nel, a new field is added into the nsproxy describing the
namespace. A new clone-flag is used to identify the names-
pace when cloning or duplicating the namespace. For ex-
ample, to clone or duplicate the hostinfo namespace, the
CLONE_NEWUTS flag is used with the clone() or unshare()

system call.
Unsharing a namespace, say the hostinfo namespace, causes

a new nsproxy to be created. All namespace-references, ex-
cept hostinfo are copied from the parent nsproxy, and their
reference counts are bumped. The nsproxy references a new
hostinfo namespace that is taken as a fresh copy of the orig-
inal.

Changes in the hostinfo information in the new namespace
are not reflected in the other. Thus two sets tasks in separate
hostinfo namespaces on the same machine can have different
values for host name and domain names.

As each task exits, the reference count on the correspond-
ing nsproxy is decremented. When no tasks remain referenc-
ing an nsproxy, the nsproxy is freed and references to all its
namespaces dropped. In turn, if the nsproxy is the last one
pointing to any of its namespaces, then those namespaces
are also freed.

3.4 System V IPC
System V Inter-Process Communications (IPC) provide

shared memory, semaphores, and message queues. Each IPC
object must have a unique ID that cooperating processes
can use to access the shared resource. Previously, three ta-
bles translated the IDs into the actual resource. To support
per-process namespaces, we made these tables a member
of the ipc_namespace structure, which is referenced by the
nsproxy. When a new ipc namespace is cloned, it is created
empty, rather than as a copy of the parent namespace. The
ipc namespaces therefore form a simple, completely isolated
and disjoint sets. As we are about to see, other namespaces
introduce far more complicated relationships.

3.5 Mounts
mounts namespaces were introduced to Linux by Al Viro

in 2000. The namespace is essentially a tree (or graph) of
mounts. A new mounts namespace is created as a copy
of the original, after which the namespaces are completely
private: updates in any one namespace are not seen in other
namespaces. For several years, this feature saw little use for
two reasons: the isolation was too strict, and, for some uses,
task creation turned out to be a poor time at which to clone
a new mounts namespace.

3.5.1 Unshare
In 2004, RedHat and IBM collaborated on an LSPP [17]

certified version of the RedHat distribution. As an LSPP
system incorporates Multi-Level Security (MLS), a user may
log into the same system at varying levels. However, appli-
cations expect to be able to share directories such as /tmp

and /home. MLS becomes problematic because /tmp and
/home/user1 must either be labeled at a high level, in which
case user1 cannot read it while at a lower level, or it must
be labeled at a low level, in which case the user cannot write
while classified at a higher level.

The typical solution to this is directory poly-instantiation,
which involves redirecting lookups under /home/user1 to
some other directory specific to user1’s current security clear-
ance. For instance, while logged in with some clearance
X, a lookup under /home/user1/ might be redirected to
/home/user1/X/. Mounts namespaces lend themselves to
a novel method of providing directory poly-instantiation. A
user’s login process spawns a new mounts namespace and
mounts /home/user1/.X/ onto /home/user1. Ideally this
would be done in a PAM module [9], but using clone()

to create a new mounts namespace from PAM is not pos-
sible. Clone only places the new task in the new mounts
namespace, while the calling process remains in the original
namespace.

To address this, the unshare() system call was intro-
duced [4]. This call creates a new mounts namespace and
attaches it to the calling process. A PAM library function
can unshare its mounts namespace, and when the library
function returns the calling process will find itself in the
new namespace.

3.5.2 Mounts Propagation
The problem remained that after login, the user’s mounts

tree was completely isolated from the system’s mounts tree.
So if a system administrator were to mount a new NFS
filesystem after a user has logged in, or the user inserts a
CD-ROM expecting a running automounter to mount the
media, the user would not see the new filesystems.

The problem was finally solved using a design by Al Viro
and implementation by Ram Pai of mounts propagation [45,
13]. A relationship is introduced between mount points: a
mount can be peer, slave, or unrelated to another mount.
Two unrelated mounts do not share mount events. If two
mounts are peers, then a mount event under one is propa-
gated to the others. If one is a master to others, then mount
events under the master are propagated to its slaves.

Figure 1 illustrates the motivating example solved using
mounts propagation. User smith has logged in, and the sys-
tem has created a new mounts namespace for his login pro-
cess. It then bind-mounted the directory /tmp/.priv/smith

onto /tmp in the new namespace, leaving /tmp in the origi-
nal namespace untouched. After his login, the automounter,
running in the initial mounts namespace, responded to a CD-
ROM insertion by mounting the CD-ROM. In figure 1(a),
the mounts trees in the two namespaces are unrelated, so
the mount does not appear in smith’s namespace.

In figure 1(b), / was made a recursively shared tree dur-
ing boot. After creating smith’s new mounts namespace,
the login program made / in the new namespace recursively
slave to the original namespace. The subsequent binding
of /tmp/.priv/smith onto /tmp is not reflected in the mas-
ter namespace, but a later mounting of the newly inserted
CD-ROM is reflected in smith’s namespace.

This example demonstrates mounts propagation between

two namespaces, but the propagation relationships are ac-
tually defined between mount points. Instead of creating a
copy of a mounts tree by creating a new namespace, we could
do so using by recursively bind-mounting the mounts tree.
Mount points in the original and new mounts trees would
have the same relationships as with a full namespace clone,
and the same mount propagation semantics would hold.

3.6 PID
The essential requirement for pid namespace is similar

to that of other namespaces - to enable virtualization, the
pids in one pid namespace must be independent of pids in
other namespaces. And to enable ACR, the pids must be
selectable within a new namespace.

But to properly monitor all activity in a system, an ad-
ministrator must be able to view and signal processes in all
pid namespaces. This brings up a second requirement in
that existing utilities like ps, top, kill etc must still be
usable to monitor and control the entire system.

A simple implementation of pid namespace would pro-
vide completely disjoint pid namespaces akin to the IPC
namespace semantics. Upon a clone(NEWPID), the pro-
cess would receive pid 1 in a clean empty pid namespace.
While such an implementation would meet first requirement
above, it would not meet the second requirement. Adminis-
trators would require additional tools and mechanisms, such
as modified waitpid() semantics, to monitor the processes
in different pid-namespaces.

More adequate but still simple pid namespace semantics
would enforce a strict two-level hierarchy. This could take
several forms, but one often-mentioned form and as imple-
mented in Vserver, Zap and OpenVZ, would be for processes
to have one “real” pid, and potentially one ’virtual’ pid.

A process in a private pid namespace would only see other
processes in its pid namespace, and would know them by
their virtual pid. A process in the initial pid namespace
would see all processes, and know them by their real pid.
This approach would suffice for simple VPS and ACR im-
plementations. However, the intent was for Linux to support
both, to the point of supporting a VPS V S1 nesting another
VPS V S2, under which a batch job was running with pri-
vate namespaces to support migrating the batch job. The
batch job, V S2, V S1, and the whole system each must have
a private pid namespace.

3.6.1 Nested pid namespaces
This requirement of nested namespaces makes pid names-

pace the most complicated namespace in terms of semantics.
An administrator on the native system must be able to

view all processes. An administrator in V S1 must be able
to view all processes in V S1, including processes in V S2

and the batch job, but must not be able to see tasks out-
side V S1. Similarly, an administrator in V S2 must be able
to view exactly all jobs in V S2 and the batch job, but no
others. A process in the batch job should only see its own
tasks. Finally, any of the batch job, V S2, or V S1 should be
migrate-able, meaning that the pid of a process in the batch
job must be both unique and selectable upon restart at each
of the three lower levels - in V S1, V S2, and the batch job’s
namespace.

The above example describes precisely the semantics as
implemented [7]. The pid namespaces form a simple tree
headed by the initial pid namespace.

/dev/cdrom

/

tmp

.priv

smith

mnt

/

tmp

.priv

smith

mnt

cdrom cdrom

initial namespace smith’s namespace

(a)

/

tmp

.priv

smith

mnt

/

tmp

.priv

smith

mnt

/dev/cdrom

cdromcdrom

initial namespace smith’s namespace

(b)

Figure 1: Simple use of mounts propagation.

VS0 (System container)

CLONE_NEWPID

VS1 Root

CLONE_NEWPID

VS2 Root

T1

T4

T6T5

T3

T2

Figure 2: A sample process tree with tasks in 3 pid
namespaces.

Task Virtual and Real Pids

T 1 { P1
0 }

T 2 { P 1
1 , P2

0 }
T 3 { P 2

1 , P3
0 }

T 4 { P 1
2 , P 3

1 , P4
0 }

T 5 { P 2
2 , P 4

1 , P5
0 }

T 6 { P 3
2 , P 5

1 , P6
0 }

Figure 3.6.1 shows a sample process tree with processes
in 3 pid namespace. In the table P i

v denotes pid of task i in
namespace v.

Task T 1 is in the initial pid namespace (V S0) and it has
a single pid, P 1

0 . It clones a task T 2 with the CLONE_NEWPID

flag. This creates a new pid namespace, V S1 and a new task
T 2. T 2 has two pids, P 1 in V S1 P 2 in V S0. We represent
these multiple pids of T 2 as { P 1

1 , P 2
0 }.

Similarly when task T 2 clones a task T 4 with CLONE_NEWPID

flag, a third pid namespace, V S2 is created. Task T 4 then
has 3 pids, one in each of V S2, V S1 and V S0 - { P 1

2 , P 3
1 ,

P 4
0 }
The pid namespaces V S0, V S1, V S2 are themselves hi-

erarchical and each pid namespace is fully contained in a
parent pid-namespace. In general, a process has a pid, and
is visible in, each ancestor pid namespace but the process is
not visible to any process in a descendant pid namespace.

So an administrator in pid namespace V S0 can see all pro-
cesses in the system but an administrator in pid namespace

V S1 can only see processes in pid namespaces V S1 and V S2.
Since the initial process in a pid namespace appears as a
normal process to its parent process even though the parent
process is in the parent pid namespace, the parent process
could continue to use waitpid() to wait for the child and
no special handling is required.

For simplicity, we do not allow unsharing pid-namespaces.
Also for simplicity, when a pid namespace is terminated, all
its descendant pid namespaces are also terminated. So the
list of pid namespaces that a process is visible in is known
at the time of process creation and does not change during
the life of the process.

3.6.2 struct pid and upid_list

Some kernel subsystems need to uniquely identify the user
or owner of certain resources. Using pids for this is vulner-
able to pids wrap-around, in which the pids is reassigned
to a new and unrelated process. The Linux kernel uses
a task_struct to represent an active process in the sys-
tem and an obvious solution to the pid wrap-around prob-
lem would be for the subsystems to hold a reference to the
task_struct until the pid can be freed. But the task_struct
is too large to be kept around long after the task exits.
Therefore a struct pid was introduced. It is small enough
to be kept around until all references to the task are dropped,
preventing wrap-around problems.

A struct pid uniquely represents a pid in the system
and refers to tasks, process-groups, and sessions. There is a
single struct pid for each task_struct (or active process or
group or session) in the system. The struct pid also serves
as a proxy to the different pids a process has in different
namespaces. These pids are plain numbers and are typically
referred to as upid (short for user-pid) or pid_ts in contrast
to the struct pid.

3.6.3 /proc pseudo filesystem
Another challenge we faced during implementation of pid

namespaces was that utilities like ps refer to /proc to list
active processes in the system. But for an administrator in
V S2 to run ps and see only processes belonging to V S2, the
contents of /proc in V S2 must be different from the contents
of V S1.

A simple and obvious solution for this problem would be
to filter the pid entries in /proc depending on the whether
the process reading /proc is in V S1 or V S2. But if two
processes, one in V S1 and other in V S2 simultaneously read
the /proc/p1 directory, they would expect to see informa-
tion about two different processes. This would require the

/proc pseudo-fs to invalidate the directory entry (dentry)
cache after each read i.e repeated accesses of /proc/p1 direc-
tory from different namespaces would result in unnecessary
thrashing in the dentry cache.

To avoid such thrashing and resulting performance loss,
each /proc mount is associated with the pid namespace of
the task which performs the mount. As a result, a task
cloned into a new pid namespace must remount /proc. Due
to race conditions resulting from the tight coupling between
process creation, process termination, and the /proc filesys-
tem, we still must mount and unmount the /proc filesystem
in the kernel while creating and destroying pid namespaces.

3.7 Network
Networking protocols are normally developed in layers,

with each layer responsible for a different facet of the com-
munications [40]. A protocol suite, such as TCP/IP, is the
combination of different protocols at various layers. TCP/IP
is normally considered to be a four-layer system.

A full featured VPS should provide network isolation and
virtualization. This secures a VPSs communication from
other VPSs, allows the same networking application (eg.
apache, sshd) running in different VPSs without conflict,
manage network resources per VPS and group these re-
sources with the VPS for ACR.

The link level and transport level isolation and virtual-
ization are used in the different VPS implementation. The
first one provides a full network stack virtualization and the
second one ensures isolation at the network level. Each ap-
proach has its set of pros and cons. The link level isolation
provides a full network stack but the virtualization must be
implemented in all the protocols in the kernel (network and
transport) while the network isolation is easier to implement
because it is focused in the network level but the restrictions
due this approach reduces considerably the use cases.

The Linux network isolation implementation acts at the
link layer. Each network namespace has its own set of net-
work devices and its own network stack. This allows a VPS
to fully control networking through the existing tools, and
configuration can be done the same way inside a VPS as on
a normal (non-VPS) host without any special VPS knowl-
edge, hence a VPS can use unmodified networking startup
scripts from a distribution.

3.7.1 The Network virtualization
XXX Each network namespace has its own set of network

devices. Any network device except loopback or tunnels can
be migrated between namespaces. Of course the number of
containers is expected to outnumber the number of physi-
cal network devices, so a new network device, called veth or
“network pair device”, has been introduced to facilitate com-
munication between namespaces. One task creates a device
pair, then migrates one of the devices to another namespace.
A packet sent in one side is received at the other side.

The instantiation of the veth virtual network driver cre-
ates two network interfaces linked together, acting like a
ethernet tunnel. Moving one side of this tunnel to a names-
pace allow to have it to pass network traffic across names-
paces : each time a packet goes through this interface, it will
be received by the other side of the network device, that is
outside of the namespace.

To communicate with the outside world, the usual con-
figuration is to have a host configured with a bridge and

eth0

VPS

br0

veth0

veth1lo

lo

SYSTEM

Figure 3: One VPS configured on the system

the physical network device, and to attach the veth side to
the bridge. Other configurations are possible using NAT or
routing, but these would quickly complicate configuration of
a host with many VPSs.

3.7.2 The network namespace infrastructure
To support per-namespace network resources we must han-

dle the fact that network components can be initialized (or
removed) at any time during the system life cycle. For ex-
ample, the ipv6 module can be loaded after some network
namespaces have been created. The network namespace in-
frastructure provides a subsystem registration and a network
namespace tracking. When a subsystem is loaded, it is reg-
istered for every network namespaces and each one will use
the initialization routing of this subsystem to initialize its
own network stack. This infrastructure ensures that the
namespace will be safe for module loading and unloading.

The network namespace life cycle differs from the other
namespaces. The network namespace is deeply refcounted in
the network stack and introduces asynchronous destruction
of network resource related to a namespace. For instanc, a
process having sent data through a TCP socket may exit
while the network stack buffers the data it is transmitted to
the peer. During this time the namespace must stay alive.

3.7.3 Virtualizing the link layer - L2
The first thing to do for the network namespace is to

create a new loopback instance and make it to belong to
the namespace. The network stack originally had a single
system-wide global variable for the loopback. The loopback
is now dynamically allocated. At the namespace creation,
the loopback is instantiated like any usual network device.
This modification was positively received because the com-
munity was looking for the loopback to be treated like any
other network device.

A function to move a network device between namespaces
has been implemented. This function takes the pid of a
process belonging to the network namespace and the network
device to be moved as parameters. The network namespace
is retrieved from the task, which is identified by its pid,
and used to register the network device. When the network

namespace is destroyed, all the network devices are moved to
the default network namespace init net. If a name conflict
occurs, the kernel will assign another name to the network
device to be reassigned to init_net.

3.7.4 Resources around the network
All the network resources an user can interact must be

taken into account, that implies to handle the proc and the
sys file systems

• /proc/net : Each network namespace has its own /proc/net

directory. This increases security and allows network-
ing tools to work within the calling process’ network
namespace, like the netstat or ifconfig commands
that look at /proc/net/dev.

• /proc/sys/net : Each network namespace can config-
ure at least a subset of the sysctls. Tasks should not
be able to change the configuration of other names-
paces.

• sysfs : The network devices are isolated. The sysfs

tree must reflect the view of the network devices re-
garding with the network namespace isolation. For
example, /sys/class/net should show only the net-
work devices belonging to the namespace.

3.8 Userid
As discussed in Section 1.1, in order to support VPSs, it

must be possible to isolate users in different servers. How-
ever, UNIX uses integer user IDs (uids) to identify users
and integer group IDs (gids) to group uids, and these inte-
ger values are used to store ownership information on per-
sistent filesystems. Short of forcing all VPS administrators
to cooperate in assigning uids and gids which are unique
throughout the whole system, it becomes necessary to turn
the user table into a namespace. As of this writing, only the
simplest part, an actual per-process uid namespace provid-
ing only separate per-user account, has been implemented.
The semantics are currently akin to those of the IPC names-
pace. That is, uid namespaces are completely disjoint, and
are created empty save for an entry for the root user.

While the design for the completion of uid namespaces is in
progress as of this writing, the following hypothetical design
is presented here as an embodiment of the requirements that
we intend to satisfy.

The uid to user mappings will continue to be disjoint, but
we must provide a mechanism to meaningfully and unam-
biguously refer to a user in order to store ownership infor-
mation for files on persistent file systems. To that end, two
changes will be made. First, a user is said to own any uid
namespaces which it has created. Second, a uid namespace
can be identified using a “Universal NameSpace IDentifier”,
or unsid. The unsid lets us sanely correlate a uid names-
pace, which is ephemeral, to a disk store, which is persistent.
So every time a VPS is restarted or an ACR job is migrated,
the corresponding user namespace can be tied to the same
unsid. The unsid is initially NULL (invalid), and setting
the unsid is a privileged operation. A task with an invalid
unsid receives user nobody permissions to all files, and may
not create any files.

A user Sallie can trace or send signals to any processes
which belong to a uid namespace she owns. A root process
only has privilege over tasks and files belonging to the un-

sid in which the process is root. When a file is created, the

current uid and unsid are stored, as are the uid and unsid

of the owning user, and so on up to the uid and unsid of
the user in the initial uid namespace. In this way, user Sal-
lie owns all root-owned files belonging to a VPS which she
created, while being root in her VPS does not allow her to
read root-owned files in another VPS or on the host system.

Until the implementation of uid namespaces is more ma-
ture, the SELinux [25] or Smack [34] security modules can
be used to isolate VPSs. Both SELinux and Smack label
processes and files with security contexts. By assigning dif-
ferent security labels to different VPSs, a VPS can be for-
bidden from signaling tasks in another VPS or reading its
files. However this is not a sufficient solution, if only because
some sites do not wish to incur either the burden of security
policy maintenance or the run-time performance cost 2.

3.9 Devices
One of the remaining unsolved problems is how to do deal

with devices, particularly when applications migrate. The
kernel provides several kinds of logical devices that are dis-
connected from real hardware: pseudo terminals [39], loop-
back devices, /dev/null, etc. Such devices should always
be available after a migration event. Pseudo terminals are
most significant as they can be used by unprivileged user
processes and are used heavily in day to day applications.

With the static device configurations of the past there are
workarounds can be employed, such as only creating those
devices that a container should use or using a device access
white-list [12]. As devices get more dynamic and the generic
device layer gets ever richer, we need to properly isolate the
device layer into its own namespace, to allow for solid VPS
and application containment and migration. We expect this
namespace to virtualize the mapping of device numbers to
devices. Complications will include filtering the visibility
of devices in sysfs, and filtering the device events sent to
processes in a container.

3.10 Security
Whenever possible, design decisions were made with a

long-term hope of allowing unprivileged unsharing of names-
paces. However, until the semantics of all namespaces are
finalized and more experience with them has been gained,
unsharing of any namespace requires privilege. The prece-
dent for requiring such privilege started with the mounts
namespace. This may appear odd since Plan9 has no such
requirement. The primary reason why unsharing a mounts
namespace may not be safe in Linux is the added “feature”
of setuid root binaries, which allow any user to execute pro-
grams with privilege. By executing such programs in a pri-
vate namespace, it may be possible to confuse these pro-
grams, potentially corrupting the system or even gaining full
superuser privilege. Work is being done to allow the manip-
ulation of parts of the mounts tree without privilege [42], but
addressing unprivileged unsharing of mounts namespaces is
work which remains to be done.

4. PERFORMANCE
While some small amount of performance impact is to be

expected by adding extra layers of indirection to translate

2The latest reported overhead incurred by SELinux was ap-
proximately 7%, while there are no known Smack perfor-
mance measurements as of yet.

IDs through namespaces, the precise impact of the names-
pace work in Linux is impossible to measure. The code
implementing namespaces is fundamental and can not be
easily removed. However, it was done cleanly enough and
efficiently enough that it is not deemed a problem.

While it is possible to configure a kernel with all or some
namespaces disabled, this does not fully disable namespaces.
It mainly disables the cloning of namespaces, so that ad-
ministrators can disable them until they are deemed more
mature. Nonetheless, a small amount of reference counting
required to manage the life-cycles of the objects represent-
ing namespace instances can be eschewed when a names-
pace is disabled. Compiling out namespace support can also
slightly decrease the size of a kernel by allowing some setup
and shutdown code to be compiled out, which is favored by
much of the embedded community. However, since the much
more frequently-exercised code to look up a resource by its
ID still flows through the regular namespace lookups, we
would expect essentially no performance difference with our
without namespace support. Likewise, in order to provide a
clean conceptual model of namespaces, the ”initial” names-
pace is generally no different from any other namespaces, so
an application running in a container should suffer no per-
formance degradation compared to an application which is
”not in a container.”

Showing the true cost of namespaces therefore would re-
quire testing a modern kernel to one predating namespaces.
This of course is not feasible as these two kernels would be
different in virtually all respects.

The network namespace is unique from the other names-
paces in that expected usage will be for the initial names-
pace’s network devices to be physical, while other names-
paces will use virtual network devices. Virtual devices will
need to pass data through physical ones, which could impact
network performance.

We can pass physical devices between network namespaces
just as we can virtual devices. We did just that in order to
show the effect of the namespace code without the processing
overhead of a virtual device and bridge.

These tests were made with the netperf tool ftp://ftp.
netperf.org with two hosts on the same network and with
network gigabyte offloading capable cards. The hosts are
identical, the first one is installed with a Fedora Core 8 and
the second one with a Fedora core 8 + the netns kernel.
The netperf benchmarking program has been run on the
system using a kernel with and without the network names-
pace compiled in, followed by a run inside a network names-
pace using a physical network device and, finally, using the
virtual network device veth. For each scenario, we want to
measure the throughput and the cpu usage. The throughput
shows if there is a bottleneck in the packets trip through the
namespaces, the cpu usage points if there is more processing
for the packets.

More scenarii, details and results are available at http:

//lxc.sourceforge.net

There is no performance degradation when comparing the
results of the benchmarking using this physical device inside
and outside the namespace. If the network namespace code
is not compiled in, the benchmarks shows there is no dif-
ference with the results when the network namespace code
is compiled in. The conclusion of these results is that the
network namespace code does not add extra overhead.

In the case of the veth usage, the results show no degra-

0

100

200

300

400

500

600

700

800

900

1000

Throughput

UDP
TCP

Configuration

M
bp

s

In
si

d
e

N
et

n
s

w
ith

 v
et

h

In
si

d
e

N
et

n
s

w
ith

 p
h

ys

W
it

h
o

u
t

N
et

n
s

W
ith

 N
et

n
s

Figure 4: Throughput - Higher is better

0

10

20

30

40

50

60

70

80

90

100

CPU usage

UDP
TCP

Configuration

%

In
si

d
e

N
et

n
s

w
ith

 v
et

h

In
si

d
e

N
et

n
s

w
ith

 p
h

ys

W
it

h
o

u
t

N
et

n
s

W
ith

 N
et

n
s

Figure 5: CPU usage - Lower is better

dation with the throughput, but a significant processor over-
head. This is directly related with the network configuration
and the different paths used by the packets through the net-
work layers due to the veth. If the physical device does
offloading, the performance overhead is more significant be-
cause veth does no checksum offloading and the network
stack inside the namespace is not aware of the physical de-
vice hardware capabilities. This issue is more related to an
optimization area than a network namespace design. It is
been already spotted for Xen [30] and optimized later [29].

5. CONCLUSION
Virtual Private Servers and Application Checkpoint and

Restart have historically been advanced Operating System
features and not generally available in common end-user sys-
tems. With the implementation of namespaces for kernel-
provided resources in Linux, groundwork has been laid for
common availability of both features. While much work re-
mains in order to provide both features, the acceptance of
this work and commitment to continued progress on remain-
ing work, the promise of fully migrate-able VPSs on end-user
machines becomes a very real possibility.

6. LEGAL STATEMENT
This work represents the view of the author and does not

necessarily represent the view of IBM.
IBM is a registered trademark of International Business

Machines Corporation in the United States and/or other
countries.

UNIX is a registered trademark of The Open Group in
the United States and other countries .

Linux is a registered trademark of Linus Torvalds in the
United States, other countries, or both.

Other company, product, and service names may be trade-
marks or service marks of others.

7. ACKNOWLEDGMENTS
The authors would like to thank Heather Crognale, Michael

Halcrow, anonymous ACM reviewers, and our Sigops pa-
per shepherd, Oren Laadan, for valuable feedback on early
drafts.

This material is based upon work supported by the De-
fense Advanced Research Projects Agency under its Agree-
ment No. HR0011-07-9-0002.

8. REFERENCES
[1] Oren La’adan Amnon Barak. The MOSIX Multicomputer

Operating System for High Performance Cluster Computing.
Future Generation Computer Systems, 13:361–372, 1998.

[2] Paul Barham, Boris Dragovic, Keir Fraser, Steven Hand,
Tim Harris, Alex Ho, Rolf Neugebauer, Ian Pratt, and
Andrew Warfield. Xen and the Art of Virtualization. ACM
symposium on Operating systems principles, 2003.

[3] Fabrice Bellard. QEMU, a Fast and Portable Dynamic
Translator. Usenix Annual Technical Conference, 2005.

[4] Jonathan Corbet. A System Call for Unsharing.
http://lwn.net/Articles/135321/, 2005.

[5] Fred Douglis and John Ousterhout. Transparent Process
Migration: Design Alternatives and the Sprite
Implementation. Software - Practice and Experience,
21(8):757–785, 1991.

[6] Jason Duell, Paul Hargrove, and Eric Roman. The Design
and Implementation of Berkeley Labs Linux
Checkpoint/Restart. http://ftg.lbl.gov/
CheckpointRestart/CheckpointRestart.shtml, 2003.

[7] Pavel Emelyanov and Kir Kolyshkin. PID Namespaces in
the 2.6.24 Kernel. http://lwn.net/Articles/259217/, 2007.

[8] Bryan Ford, Mike Hibler, Jay Lepreau, Patric Tullmann,
Godmar Back, and Stephen Clawson. Microkernels Meet
Recursive Virtual Machines. Proceedings of the Second
Symp. on Operating Systems Design and Implementation,
pages 137–151, 1996.

[9] Kenneth Geisshirt. Pluggable Authentication Modules: The
Definitive Guide to PAM for Linux SysAdmins and C
Developers. Packt Publishing, 2006.

[10] Cedric Le Goater, Daniel Lezcano, Clement Calmels, Dave
Hansen, Serge Hallyn, and Hubertus Franke. Making
applications mobile using containers. Proceedings of the
Ottawa Linux Symposium, pages 347–367, 2006.

[11] Robert P. Goldberg. Survey of Virtual Machine Research.
IEEE Computer, pages 34–45, June 1974.

[12] Serge Hallyn. cgroups: Implement Device Whitelist LSM.
http://lwn.net/Articles/273208/, 2008.

[13] Serge E. Hallyn and Ram Pai. Applying Mount
Namespaces. http://www.ibm.com/developerworks/linux/
library/l-mount-namespaces.html, 2007.

[14] IBM. IBM Workload Partitions Manager for AIX.
http://www-03.ibm.com/systems/p/os/aix/sysmgmt/wpar/.

[15] IBM. Customer Engineering Announcement: IBM
System/360. http://archive.computerhistory.org/
resources/text/IBM/IBM.System_360.1964.102646081.pdf,
1964.

[16] Cray Inc. Cray X1 System Overview - S-2346-23. Cray
software distribution center, 2002.

[17] NSA Information Systems Security Organization. Labeled
Security Protection Profile. http://www.
commoncriteriaportal.org/files/ppfiles/lspp.pdf, 1999.

[18] Ganesh Venkitachalam Jeremy Sugarman and Beng-Hong
Lim. Virtualizing I/O Devices on VMWare Workstation’s
Hosted Virtual Machine Monitor. Usenix Annual Technical
Conference, 2001.

[19] Poul-Henning Kamp and Robert Watson. Jails: Confining
the Omnipotent Root. SANE, 2000.

[20] Avi Kivity, Yaniv Kamay, Dor Laor, Uri Lublin, and
Anthony Liguori. kvm: the Linux Virtual Machine Monitor.
Proceedings of the Linux Symposium, 2007.

[21] Oren Laadan and Jason Nieh. Transparent
Checkpoint-Restart of Multiple Processes on Commodity
Operating Systems. Usenix Annual Technical Conference,
pages 323–336, 2007.

[22] Charles R. Landau. The Checkpoint Mechanism in
KeyKOS. Proceedings of the Second International Workshop
on Object Orientation in Operating Systems, september
1992.

[23] Michael Litzkow, Todd Tannenbaum, Jim Basney, and
Miron Livny. Checkpoint and Migration of UNIX Processes
in the Condor Distributed Processing System.
http://www.cs.wisc.edu/condor/doc/ckpt97.pdf, 1997.

[24] Miron Livny and the Condor team. Condor: Current
Limitations. http://www.cs.wisc.edu/condor/manual/v6.
4/1_4Current_Limitations.html.

[25] Peter Loscocco and Stephen Smalley. Integrating Flexible
Support for Security Policies into the Linux Operating
System. USENIX Annual Technical Conference, FREENIX
Track, pages 29–42, 2001.

[26] Michael MacIsaac, Mike Duffy, Martin Soellig, and Ampie
Vos. S/390 Server Consolidation - A Guide for IT Managers.
http://www.redbooks.ibm.com, October 1999.

[27] John Mehnert-Spahn. Container Checkpointing.
http://www.kerrighed.org/docs/KerrighedSummit07/
JM-Container_Checkpointing.pdf, 2007.

[28] Paul B. Menage. Adding Generic Process Containers to the
Linux Kernel. Proceedings of the Ottawa Linux Symposium,
2007.

[29] Aravind Menon, Alan L. Cox, and Willy Zwaenepoel.
Optimizing Network Virtualization in Xen. http:
//www.usenix.org/events/usenix06/tech/menon.html,
2006.

[30] Aravind Menon, Jose Renato Santos, Yoshio Turner,
G. (John) Janakiraman, and Willy Zwaenepoel. Diagnosing
Performance Overheads in the Xen Virtual Machine
Environment. http://www.usenix.org/events/vee05/full_
papers/p13-menon.pdf, 2005.

[31] Rob Pike, Dave Presotto, Ken Thompson, Howard Tricke y,
and Phil Winterbottom. The Use of Name Spaces in Plan 9.
Operating Systems Review, 1992.

[32] Daniel Price and Andrew Tucker. Solaris Zones: Operating
System Support for Consolidating Commercial Workloads.
Usenix LISA, 2004.

[33] Rusty Russell. Lguest: The Simple x86 Hypervisor.
http://lguest.ozlabs.org/, 2007.

[34] Casey Schaufler. The Simplified Mandatory Access Control
Kernel.
http://linux.conf.au/programme/detail?TalkID=92, 2008.

[35] Brian K. Schmidt. Supporting Ubiquitous Computing with
Stateless Consoles and Computation Caches. http:
//www-suif.stanford.edu/~bks/publications/thesis.pdf,
August 2000.

[36] Jason Nieh Shaya Potter and Matt Selsky. Secure Isolation
of Untrusted Legacy Applications. Usenix LISA, 2007.

[37] Stephen Soltesz, Herbert Potzl, Marc Fiuczynski, Andy
Bavier, and Larry Peterson. Container-based Operating
System Virtualization: A Scalable, High-Performance
Alternative to Hypervisors. ACM SIGOPS/EuroSys
European Conference on Computer Systems, pages 275–287,
2007.

[38] Clifford Spinac. Dynamic logical partitioning for Linux on
POWER. http://www-128.ibm.com/developerworks/
systems/library/es-dynamic/, 2005.

[39] Richard Stevens. Advanced Programming in the UNIX
Environment. Addison-Wesley, 1992.

[40] Richard Stevens. TCP/IP Illustrated, Volume 1.
Addison-Wesley, Indianapolis, 2001.

[41] SWSoft. OpenVZ User’s Guide. http:
//download.openvz.org/doc/OpenVZ-Users-Guide.pdf,
2005.

[42] Miklos Szeredi. Mount Ownership and Unprivileged Mount
Syscall. http://lwn.net/Articles/273729/, 2008.

[43] Kerrighed team. Kerrighed.
http://www.kerrighed.org/wiki/index.php/Main_Page,
2008.

[44] Bill Tuthill, Karen Johnson, and Terry Schultz. IRIX
Checkpoint and Restart Operation Guide. SGI Technical
Publications, 2003.

[45] Al Viro. [RFC] Shared Subtrees.
http://lwn.net/Articles/119232/, 2005.

[46] Victor C. Zandy. ckpt - Process Checkpoint Library.
http://pages.cs.wisc.edu/~zandy/ckpt/README.

