
Introduction Design and Implementation Evaluation Conclusion

High-speed Checkpointing for High Availability

Brendan Cully
brendan@cs.ubc.ca

Department of Computer Science

The University of British Columbia

Xen Summit 5, November 2007

Brendan Cully The University of British Columbia

High-speed Checkpointing for High Availability

Introduction Design and Implementation Evaluation Conclusion

Motivation and Approach

High availability in a nutshell

◮ The ability to tolerate fail-stop physical failure

◮ Not software failures

◮ Not non-fatal errors (memory errors etc)

◮ Not cold-start (recovery should be seamless)

Brendan Cully The University of British Columbia

High-speed Checkpointing for High Availability

Introduction Design and Implementation Evaluation Conclusion

Motivation and Approach

High availability is hard

◮ Customized hardware is expensive and inflexible

◮ Operating systems are complex and ever-changing

◮ Libraries are restrictive

◮ Applications infinitely reinvent the (square) wheel

Brendan Cully The University of British Columbia

High-speed Checkpointing for High Availability

Introduction Design and Implementation Evaluation Conclusion

Motivation and Approach

The Xen solution

◮ Machine state is readily available

◮ Interface is narrow and stable

◮ Performance is good

Brendan Cully The University of British Columbia

High-speed Checkpointing for High Availability

Introduction Design and Implementation Evaluation Conclusion

Motivation and Approach

The REMUS High Availability Service

Redundancy-

Enhanced

Moderately

Unreliable

Servers

A checkpoint-based service providing
◮ Generality

◮ Transparency

◮ Seamless failure recovery

◮ Multiprocessor support

◮ Active-Passive configuration

Brendan Cully The University of British Columbia

High-speed Checkpointing for High Availability

Introduction Design and Implementation Evaluation Conclusion

Outline

Introduction

Design and Implementation
High-speed checkpointing
Network buffering
Disk replication
Failure detection

Evaluation

Conclusion

Brendan Cully The University of British Columbia

High-speed Checkpointing for High Availability

Introduction Design and Implementation Evaluation Conclusion

Overview

Approach

◮ Encapsulate execution in a virtual machine

◮ Perform frequent lightweight checkpoints

◮ Execute speculatively between checkpoints

◮ Propagate checkpoints asynchronously

Brendan Cully The University of British Columbia

High-speed Checkpointing for High Availability

Introduction Design and Implementation Evaluation Conclusion

Overview

High-level overview

VMM

Protected VM

Active Host

(Other)

Active Hosts

Replication

Engine

Memory

External

Devices

external

network

VMM

Backup VM

Backup Host

Replication

Server

Memory

Storage

Heartbeat Heartbeat

VMM

Protected VM Replication

Engine

Memory

External

Devices

Heartbeat

VMM

Protected VM Replication

Engine

Memory

External

Devices

Heartbeat

Brendan Cully The University of British Columbia

High-speed Checkpointing for High Availability

Introduction Design and Implementation Evaluation Conclusion

Overview

General operation

◮ The primary and backup begin with identical disk images

◮ Attach disk and network proxies to the protected VM when it
begins execution

◮ At frequent intervals (≈ 25ms) take a checkpoint of memory
and disk state and propagate it to the backup

◮ When the checkpoint has been acknowledged at the backup,
buffered output is released to external clients

Brendan Cully The University of British Columbia

High-speed Checkpointing for High Availability

Introduction Design and Implementation Evaluation Conclusion

High-speed checkpointing

Virtual machine checkpointing

◮ Modification of existing code supporting live migration
◮ In essence, it moves the virtual machine to a new location, but

also leaves it running at the old location
◮ The remote node does not allow the image to execute until a

failure occurs at the primary

◮ Required several changes
◮ Performance optimizations
◮ Changes to Xen to allow checkpointed images to resume

execution (now in the upstream codebase)
◮ Changes to ensure that a consistent image is available at all

times on the backup

Brendan Cully The University of British Columbia

High-speed Checkpointing for High Availability

Introduction Design and Implementation Evaluation Conclusion

High-speed checkpointing

Live migration in a nutshell

◮ Xen puts the virtual machine into shadow paging mode
◮ Guest page tables are replaced at the hardware level with

versions in which all pages are marked read-only
◮ Write faults allow Xen to maintain a map of dirty pages before

restoring read-write access to pages (or propagating page
faults)

◮ Live migration is performed by copying dirty pages to the new
location without pausing the guest

◮ This occurs in rounds: the migration process chases the
virtual machine

◮ A final round before migration pauses the domain in order to
capture a consistent image of up-to-date state before
activating the VM at the new location

◮ The original VM is destroyed

Brendan Cully The University of British Columbia

High-speed Checkpointing for High Availability

Introduction Design and Implementation Evaluation Conclusion

High-speed checkpointing

Checkpointing support

◮ Checkpointing is the repeated execution of the final stage of
live migration: all state changed since the previous epoch is
propagated

◮ To allow repeated checkpointing, new functions were added to
Xen to mark a domain as runnable after suspend

◮ The migration process was converted into a persistent daemon

◮ The process receiving migration data was modified to buffer
checkpoint rounds in memory and apply them only after they
had been completely received

◮ It was also modified to loop waiting for new checkpoint data
unless the connection to the sender times out

Brendan Cully The University of British Columbia

High-speed Checkpointing for High Availability

Introduction Design and Implementation Evaluation Conclusion

High-speed checkpointing

Performance optimizations

◮ Checkpoint data is buffered locally and propagated after the
guest has resumed

◮ Special signalling is used to request guest suspension and
receive notification upon completion

◮ This reduces the time required for this operation from an
average of 30-40ms (worst-case over 500ms) to roughly 100us

◮ The guest suspend process is simplified. Devices are no longer
disconnected on suspend or reconnected on resume

Brendan Cully The University of British Columbia

High-speed Checkpointing for High Availability

Introduction Design and Implementation Evaluation Conclusion

Network buffering

Network buffer principles

◮ IP networks are unreliable
◮ They may lose, duplicate or reorder packets
◮ Applications either tolerate this or use a layer above IP to

provide stream semantics (i.e. TCP)

◮ Replication does not need to preserve network data to ensure
correctness

◮ If network output is lost due to failover, applications will
recover

◮ Network output representing speculative state must be
buffered

◮ In the case of failure, the state that produced this output is
lost, and not likely to return

Brendan Cully The University of British Columbia

High-speed Checkpointing for High Availability

Introduction Design and Implementation Evaluation Conclusion

Network buffering

Network buffer overview

Buffer

Client

Primary Host

VM

Brendan Cully The University of British Columbia

High-speed Checkpointing for High Availability

Introduction Design and Implementation Evaluation Conclusion

Network buffering

Network buffer implementation

◮ Implemented as a custom-built queueing discipline
◮ Queueing disciplines regulate outbound traffic from network

devices. Commonly used to rate-limit (token-bucket) or
provide better fairness under congestion (SFQ)

◮ Have two basic operations: enqueue and dequeue. In Remus,
packets are only dequeued when the state that generated them
has been checkpointed

◮ Remus sends a message via RTNetlink to the queueing
discipline to mark a checkpoint

◮ Installed over the IMQ device
◮ Outbound traffic from the guest VM is inbound traffic for the

host
◮ Linux queueing disciplines only queue outbound traffic
◮ IMQ is a third-party virtual device that accepts inbound traffic

and reinjects it specifically to allow inbound queueing

Brendan Cully The University of British Columbia

High-speed Checkpointing for High Availability

Introduction Design and Implementation Evaluation Conclusion

Disk replication

Disk replication principles

◮ The active disk must be crash-consistent at all times

◮ In case of failure, disk state at the time of the most recent
checkpoint must be available

◮ At all times, only one physical disk represents the most recent
state of the host

Brendan Cully The University of British Columbia

High-speed Checkpointing for High Availability

Introduction Design and Implementation Evaluation Conclusion

Disk replication

Disk replication overview

Primary

Host

1

2

B
u

ffe
r

Secondary

 Host

3

1 Disk writes are issued

directly to local disk

2 Simultaneously sent

to backup bu!er

3 Writes released to disk

after checkpoint

Brendan Cully The University of British Columbia

High-speed Checkpointing for High Availability

Introduction Design and Implementation Evaluation Conclusion

Disk replication

Disk replication implementation

◮ Implemented as a block tap module
◮ The block tap is a Xen device that allows a user-space process

to interpose on the block request/response stream between a
virtual machine and its devices

◮ Operates as a client/server pair

◮ The client
◮ Propagates disk write requests to the server at the same time

that it passes them to the underlying device
◮ Forwards checkpoint messages from Remus to the backup
◮ Forwards checkpoint commit messages from the backup to

Remus

Brendan Cully The University of British Columbia

High-speed Checkpointing for High Availability

Introduction Design and Implementation Evaluation Conclusion

Disk replication

Disk replication server

◮ The server maintains two separate buffers
◮ The speculation buffer receives the write request stream

forwarded from the client
◮ When a checkpoint message arrives in the stream, it moves the

speculation buffer into the write-out buffer

◮ The contents of the write-out buffer are written to disk
asynchronously

◮ In the event of failure, the speculation buffer is discarded

◮ Execution does not begin on the backup until the write-out
buffer has been flushed to disk

◮ Once execution has begun, the backup represents externally
visible state — its disk image must be at least crash-consistent

◮ When the write-out buffer has drained, an activation record is
written to disk and execution may resume

Brendan Cully The University of British Columbia

High-speed Checkpointing for High Availability

Introduction Design and Implementation Evaluation Conclusion

Failure detection

Detecting failure

◮ Failure detection is managed by a simple in-stream heartbeat
◮ If the primary times out writing to the backup, or does not

receive checkpoint commit acknowledgment, it disables
replication

◮ If the backup times out reading checkpoint data from the
primary, it activate the replicated VM from the most recent
completed checkpoint.

◮ Currently there is no provision for fencing in the case of
network partition

◮ Bonded NICs on the replication channel may suffice

Brendan Cully The University of British Columbia

High-speed Checkpointing for High Availability

Introduction Design and Implementation Evaluation Conclusion

Experiment Setup

Test environment

UBC netbed
◮ Each node is equipped with

◮ 1 3.2 GHz Pentium 4 CPU (2 hyperthreads)
◮ 3 1Gbps NICs
◮ 1024 MB RAM (mostly)
◮ 1 80 GB SATA drive

◮ Nodes are networked
◮ One link is for application traffic
◮ One link provides administrative access
◮ One link is for replication traffic

Brendan Cully The University of British Columbia

High-speed Checkpointing for High Availability

Introduction Design and Implementation Evaluation Conclusion

Does it work?

Failover test

◮ Test procedure
◮ Ping primary every 200ms to measure response time
◮ SSH to node, begin kernel compilation
◮ Disconnect power to primary node

◮ Results
◮ SSH session remains open
◮ Kernel compilation continues to successful completion
◮ Ping reports 6 lost packets (1.2 seconds unavailable)

Brendan Cully The University of British Columbia

High-speed Checkpointing for High Availability

Introduction Design and Implementation Evaluation Conclusion

Kernel compilation

The effect of checkpointing on kernel compilation time

Checkpoints per second

0 10 20 30 40

K
er

ne
l b

ui
ld

 ti
m

e
(s

ec
on

ds
)

0
25
50
75

100
125
150
175
200
225
250
275
300
325
350
375
400
425
450
475
500
525
550
575
600
625
650
675
700
725
750

Brendan Cully The University of British Columbia

High-speed Checkpointing for High Availability

Introduction Design and Implementation Evaluation Conclusion

Exercises for the reader

Future work

◮ Hardware virtualization support

◮ Introspection optimizations

◮ Copy-on-write checkpoints

◮ Deadline scheduler

◮ Replication stream compression

◮ Disaster protection

Brendan Cully The University of British Columbia

High-speed Checkpointing for High Availability

Introduction Design and Implementation Evaluation Conclusion

Easy questions?

Thank you

f i n

Brendan Cully The University of British Columbia

High-speed Checkpointing for High Availability

	Introduction
	

	Design and Implementation
	
	High-speed checkpointing
	Network buffering
	Disk replication
	Failure detection

	Evaluation
	
	
	

	Conclusion
	
	

