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Motivation and Approach

High availability in a nutshell

◮ The ability to tolerate fail-stop physical failure

◮ Not software failures

◮ Not non-fatal errors (memory errors etc)

◮ Not cold-start (recovery should be seamless)
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Motivation and Approach

High availability is hard

◮ Customized hardware is expensive and inflexible

◮ Operating systems are complex and ever-changing

◮ Libraries are restrictive

◮ Applications infinitely reinvent the (square) wheel
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Motivation and Approach

The Xen solution

◮ Machine state is readily available

◮ Interface is narrow and stable

◮ Performance is good
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Motivation and Approach

The REMUS High Availability Service

Redundancy-

Enhanced

Moderately

Unreliable

Servers

A checkpoint-based service providing
◮ Generality

◮ Transparency

◮ Seamless failure recovery

◮ Multiprocessor support

◮ Active-Passive configuration
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Overview

Approach

◮ Encapsulate execution in a virtual machine

◮ Perform frequent lightweight checkpoints

◮ Execute speculatively between checkpoints

◮ Propagate checkpoints asynchronously
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Overview

High-level overview
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Overview

General operation

◮ The primary and backup begin with identical disk images

◮ Attach disk and network proxies to the protected VM when it
begins execution

◮ At frequent intervals (≈ 25ms) take a checkpoint of memory
and disk state and propagate it to the backup

◮ When the checkpoint has been acknowledged at the backup,
buffered output is released to external clients
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High-speed checkpointing

Virtual machine checkpointing

◮ Modification of existing code supporting live migration
◮ In essence, it moves the virtual machine to a new location, but

also leaves it running at the old location
◮ The remote node does not allow the image to execute until a

failure occurs at the primary

◮ Required several changes
◮ Performance optimizations
◮ Changes to Xen to allow checkpointed images to resume

execution (now in the upstream codebase)
◮ Changes to ensure that a consistent image is available at all

times on the backup
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High-speed checkpointing

Live migration in a nutshell

◮ Xen puts the virtual machine into shadow paging mode
◮ Guest page tables are replaced at the hardware level with

versions in which all pages are marked read-only
◮ Write faults allow Xen to maintain a map of dirty pages before

restoring read-write access to pages (or propagating page
faults)

◮ Live migration is performed by copying dirty pages to the new
location without pausing the guest

◮ This occurs in rounds: the migration process chases the
virtual machine

◮ A final round before migration pauses the domain in order to
capture a consistent image of up-to-date state before
activating the VM at the new location

◮ The original VM is destroyed
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High-speed checkpointing

Checkpointing support

◮ Checkpointing is the repeated execution of the final stage of
live migration: all state changed since the previous epoch is
propagated

◮ To allow repeated checkpointing, new functions were added to
Xen to mark a domain as runnable after suspend

◮ The migration process was converted into a persistent daemon

◮ The process receiving migration data was modified to buffer
checkpoint rounds in memory and apply them only after they
had been completely received

◮ It was also modified to loop waiting for new checkpoint data
unless the connection to the sender times out
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High-speed checkpointing

Performance optimizations

◮ Checkpoint data is buffered locally and propagated after the
guest has resumed

◮ Special signalling is used to request guest suspension and
receive notification upon completion

◮ This reduces the time required for this operation from an
average of 30-40ms (worst-case over 500ms) to roughly 100us

◮ The guest suspend process is simplified. Devices are no longer
disconnected on suspend or reconnected on resume
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Network buffering

Network buffer principles

◮ IP networks are unreliable
◮ They may lose, duplicate or reorder packets
◮ Applications either tolerate this or use a layer above IP to

provide stream semantics (i.e. TCP)

◮ Replication does not need to preserve network data to ensure
correctness

◮ If network output is lost due to failover, applications will
recover

◮ Network output representing speculative state must be
buffered

◮ In the case of failure, the state that produced this output is
lost, and not likely to return
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Network buffering

Network buffer overview

Buffer

Client

Primary Host

VM
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Network buffering

Network buffer implementation

◮ Implemented as a custom-built queueing discipline
◮ Queueing disciplines regulate outbound traffic from network

devices. Commonly used to rate-limit (token-bucket) or
provide better fairness under congestion (SFQ)

◮ Have two basic operations: enqueue and dequeue. In Remus,
packets are only dequeued when the state that generated them
has been checkpointed

◮ Remus sends a message via RTNetlink to the queueing
discipline to mark a checkpoint

◮ Installed over the IMQ device
◮ Outbound traffic from the guest VM is inbound traffic for the

host
◮ Linux queueing disciplines only queue outbound traffic
◮ IMQ is a third-party virtual device that accepts inbound traffic

and reinjects it specifically to allow inbound queueing
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Disk replication

Disk replication principles

◮ The active disk must be crash-consistent at all times

◮ In case of failure, disk state at the time of the most recent
checkpoint must be available

◮ At all times, only one physical disk represents the most recent
state of the host
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Disk replication

Disk replication overview
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Disk replication

Disk replication implementation

◮ Implemented as a block tap module
◮ The block tap is a Xen device that allows a user-space process

to interpose on the block request/response stream between a
virtual machine and its devices

◮ Operates as a client/server pair

◮ The client
◮ Propagates disk write requests to the server at the same time

that it passes them to the underlying device
◮ Forwards checkpoint messages from Remus to the backup
◮ Forwards checkpoint commit messages from the backup to

Remus
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Disk replication

Disk replication server

◮ The server maintains two separate buffers
◮ The speculation buffer receives the write request stream

forwarded from the client
◮ When a checkpoint message arrives in the stream, it moves the

speculation buffer into the write-out buffer

◮ The contents of the write-out buffer are written to disk
asynchronously

◮ In the event of failure, the speculation buffer is discarded

◮ Execution does not begin on the backup until the write-out
buffer has been flushed to disk

◮ Once execution has begun, the backup represents externally
visible state — its disk image must be at least crash-consistent

◮ When the write-out buffer has drained, an activation record is
written to disk and execution may resume
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Failure detection

Detecting failure

◮ Failure detection is managed by a simple in-stream heartbeat
◮ If the primary times out writing to the backup, or does not

receive checkpoint commit acknowledgment, it disables
replication

◮ If the backup times out reading checkpoint data from the
primary, it activate the replicated VM from the most recent
completed checkpoint.

◮ Currently there is no provision for fencing in the case of
network partition

◮ Bonded NICs on the replication channel may suffice
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Experiment Setup

Test environment

UBC netbed
◮ Each node is equipped with

◮ 1 3.2 GHz Pentium 4 CPU (2 hyperthreads)
◮ 3 1Gbps NICs
◮ 1024 MB RAM (mostly)
◮ 1 80 GB SATA drive

◮ Nodes are networked
◮ One link is for application traffic
◮ One link provides administrative access
◮ One link is for replication traffic
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Does it work?

Failover test

◮ Test procedure
◮ Ping primary every 200ms to measure response time
◮ SSH to node, begin kernel compilation
◮ Disconnect power to primary node

◮ Results
◮ SSH session remains open
◮ Kernel compilation continues to successful completion
◮ Ping reports 6 lost packets (1.2 seconds unavailable)
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Kernel compilation

The effect of checkpointing on kernel compilation time

Checkpoints per second
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Exercises for the reader

Future work

◮ Hardware virtualization support

◮ Introspection optimizations

◮ Copy-on-write checkpoints

◮ Deadline scheduler

◮ Replication stream compression

◮ Disaster protection
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Easy questions?

Thank you

f i n
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