
1.0 Introduction

Repeatable execution is a crucial component of
cyclic debugging, performance monitoring and
fault tolerance based on journaling. For example,
in cyclic debugging bugs are located by repeatedly
running an application and then replaying execu-
tions that exhibit erroneous behavior in order to
isolate the cause of the problem. In fault tolerance,
programs running on a system that has failed can
be recovered by starting them from a saved earlier
state and bringing them up to the state that existed
at the time of the failure by recreating inputs and
other external events.

The most difficult types of programs to replay are
those that contain non-determinism. Non-deter-
minism is present if an application given the same
inputs can obtain different states and possibly pro-
duce different outputs across multiple executions.
Sources of non-determinism include asynchronous
interrupts, concurrent or parallel access to shared

data, and dependence on external conditions such
as time. In many cases increased performance can
be obtained by reducing the amount of synchroni-
zation among processes sharing data, which leads
to the introduction of non-deterministic access pat-
terns. At other times a form of non-determinism,
called arace, is inadvertently created through the
incorrect implementation or omission of synchro-
nization.

In this paper we present an algorithm calledrepeat-
able scheduling [8] for recording and replaying the
execution of shared memory applications that has
several major advantages over existing approaches.
The technique is based on the fact that repeatable
execution can be obtained by recreating the sched-
uled behavior of an application at instruction level
granularity. This is accomplished through the use
of an instruction counter [1][4][7] and a mecha-
nism that makes the application’s schedule visible
to the replay system.

Operating System Support for Replay of Concurrent
Non-Deterministic Shared Memory Applications

Mark Russinovich and Bryce Cogswell
Department of Computer Science

University of Oregon
Eugene, OR 97403

{mer,cogswell}@cs.uoregon.edu

Replay of shared memory program execution is desirable in many domains including cyclic debugging,
fault tolerance and performance monitoring. Past approaches to repeatable execution have focused on the
problem of re-executing the shared memory access patterns in parallel programs. With the proliferation of
operating system supported threads and shared memory for uniprocessor programs, there is a clear need
for efficient replay of concurrent applications. The solutions for parallel systems can be performance
prohibitive when applied to the uniprocessor case. We briefly present an algorithm, called the repeatable
scheduling algorithm, combining scheduling and instruction counts to provide an invariant for efficient,
language independent replay of concurrent shared memory applications. We focus on the design of a
general operating system exported framework that makes possible the use of hardware instruction
counters and scheduling notifications for efficient implementation of repeatable scheduling.

Keywords: Non-determinism, shared memory, repeatable execution, instruction counter

The remainder of this paper is organized as fol-
lows: Section 2.0 discusses our approach, known
as Repeatable Scheduling and Section 3.0
describes the general operating system support we
are adding for efficient application replay. Finally,
Section 4.0 summarizes with some conclusions.

2.0 Repeatable Scheduling

While most existing solutions to shared memory
replay are designed for parallel systems, our work
concentrates on uniprocessor concurrent execution.
In a concurrent system running on a uniprocessor
only one process or thread of control will be exe-
cuting at any given point in time. Non-determinism
arises in applications that share memory because
the interleaving of accesses to the shared data by
different processes or threads may be different
across executions of the application given identical
inputs. The key to efficient repeatable execution of
such applications is the realization that the inter-
leaving is controlled by the system scheduler. To
precisely repeat the execution of a non-determinis-
tic shared-memory application the coarse-grained
interleaving characteristics can be recreated by
repeating the same schedule, ensuring that context
switches occur at exactly the same instructions
during replay as during the original execution.

2.1 System Model

The idea behind the repeatable scheduling algo-
rithm is partly based on past work in repeatable
execution that focuses on replaying asynchronous
events [3][7]. In the previous work, the model is
that of a single process where non-determinism is
present in the form of asynchronous interrupts.
Such interrupts can be delivered to a process at any
instruction, and correct replay of a process that has
received asynchronous events requires that such
events be replayed at the same instructions in each
repeated execution. This can be accomplished by
using an instruction counter, as in [7], to record the
number of instructions that have executed between
events and then controlling how many instructions
are executed in a replay before an event must be
recreated.

.In our algorithm we allow for non-determinism to
be introduced through shared memory accesses.
On a uniprocessor the ordering of shared memory
accesses is ultimately determined by how the pro-
cesses or threads of an application are scheduled.
We therefore have extended the notion of an asyn-
chronous event in [7] to include preemptions per-
formed by the scheduler. In the original execution
an instruction count is saved at each preemption
point in the application, recording the exact place
in the execution where the pre-emption occurs, and
the identifier of the process or thread that it pre-
empted. In a replay execution, the saved preemp-
tion information is read and used to force
preemptions at the same places in the execution.

The two requirements that make a replay system
possible are that the application’s schedule is visi-
ble to the replay system and that an instruction
counter is provided to measure the progress of the
application.

2.2 Scheduling

The replay system keeps track of the threads that
exist throughout an application’s execution. When
threads are preempted, the replay system records
the thread’s identifier and instruction count value
before waking up the next thread.

To replay an execution the replay system reads pre-
emption records from a log and instead of preempt-
ing based on time-slices, use the instruction
counter to determine when to force preemptions.
Because the scheduler is deterministic (an assump-
tion discussed later), it performs the same schedul-
ing decisions as it did in the original run of the
application, meaning that no information need be
logged during context-switches that occur due to
synchronization (since the succeeding thread will
be the same during both the original run and
replay). This ensures that the only scheduling deci-
sions that must be logged are those due to time-
slice preemptions and blocking on I/O (the timing
of which can vary from run to run).

3.0 Operating System Support

A repeatable scheduling system can be imple-
mented using either a hardware [5][4] or software
[7] based instruction counter, and the necessary
scheduling support can reside in either user space
or within the operating system. We have imple-
mented a software instruction counter based
approach in user space under the Mach 3.0 operat-
ing system is described in [8], and the performance
is shown to compare well to native execution time
(overhead of 10-15%). However, a number of
improvements to this system are made available by
making use of a hardware instruction counter sup-
ported by operating system extensions.

Hardware instruction counters have been in gen-
eral use since about 1987 when HP introduced its
HP-Precision architecture, and they have recently
been implemented in the Pentium and Pentium Pro
processors. This trend indicates wide-spread
acknowledgment of the potential uses of hardware
instruction counters.

The advantage of using a hardware instruction
counter is improved performance and, more impor-
tantly, application transparency. In a software-
based approach the code must be built into applica-
tions at compile-time. Moving to a hardware-based
counter allows replay to be accomplished without
recompiling.

Providing operating system hooks supporting such
a hardware instruction counter vastly simplifies the
replay system design, and lends greater flexibility
to the scheduling policies that are possible. This is
due to the fact that the OS is able to save and
restore the instruction counter values at context-
switches and it is directly involved in performing
preemptions and scheduling decisions.

The remainder of this section will describe the gen-
eral requirements for a hardware based operating
system supported replay system, and then describe
an implementation in progress using the Mach
operating system running on the Pentium proces-
sor.

3.1 Requirements

The requirements for implementing an OS sup-
ported hardware based replay system are minimal,
and can be divided into two categories: support for
reading and writing the instruction counter and
scheduling support. These two areas will be dis-
cussed in turn.

The purpose of the instruction counter is to mea-
sure the number of instructions that are executed
by a thread during each of its timeslices, which
allows an identical execution profile to be recre-
ated during replay. In support of this, the OS must
associate an instruction counter value with each
thread and provide read/write access to it during
context switches among threads that are to be
replayed. This is easily accomplished by having
the OS save and restore the instruction counter
value along with the remainder of the register set
associated with each thread, and then send a signal
or message to the replay system with access rights
to the thread's context during context switches.

OS scheduling support is more complicated,
because one of the predicates of the replay system
is that scheduling is deterministic. Our definition of
deterministic scheduling is that the thread selected
to run during each preemption or blocking opera-
tion depends only on the sequence of previously
scheduled threads and their associated instruction
counts. Beyond this requirement it is necessary to
allow the replay system to record the scheduling
decisions made during the initial run, and then
enforce that scheduling behavior during replay. OS
support can be provided by sending a message to
the replay system during context switches indicat-
ing the next thread to be scheduled, and allowing
the replay system to modify the decision if desired.

3.2 Mach 3.0 Implementation

To support efficient repeatable scheduling, as well
as other types of replay based on hardware instruc-
tion counters, we have designed a few simple, yet
powerful system calls that give applications the
necessary power for replay with minimal intrusion
and overhead. The system calls are divided into

two general and distinct categories: those dealing
with hardware instruction counters, and those deal-
ing with application thread scheduling.

The hardware instruction counter routines essen-
tially export hardware instruction counter control
and visibility to user space, allowing a threads to
control and monitor the progress of other threads.
Each thread has its own unique instruction counter
value that measures the progress of the thread.
Uniqueness and repeatability are achieved by hav-
ing the operating system record counts for only
instructions executed by the threads in user-space
(i.e. instruction counting for a particular thread
would stop on any transition of control from the
thread to the operating system and start on any
transition in the reverse direction).

Listed below are the user-level call prototypes and
descriptions for the replay functions, which are
actually library routines that sit on a message-
based system call interface, that are added to pro-
vide an application-level abstraction to a hardware
instruction counter.

void mach_thread_register_counter(thread,
rollover_callback)

thread_t thread;
thread_t (*rollover_callback)();
/* callback definition */
void rollover_callback(thread_t thread);

This call registers a thread with the operating sys-
tem for instruction counting. It can only be made
on threads currently in a suspended state and typi-
cally is used just after a thread is created, but
before it is allowed to execute. The callback func-
tion is a routine that is called in the registering
thread’s context whenever the instruction counter
of the target thread rolls over. The callback proce-
dure can be used to monitor or control the execu-
tion of the application.

void mach_thread_set_instruction_counter(thread,
countval)

thread_t thread;
int countval;

This call simply sets the specified thread’s instruc-
tion count to the indicated value. The counter’s

value determines the number of instructions exe-
cuted before a thread that has registered a rollover
callback will be notified.

int mach_thread_get_instruction_counter(thread)
thread_t thread;

Calls to this function return the current value of a
thread’s instruction counter.

void mach_thread_register_scheduling(thread,
sched_callback)

thread_t thread;
thread_t sched_callback;
/* callback definition */
thread_t sched_callback(thread_t prev,

thread_t next);

In order to support repeatable scheduling, the
replay manager must be aware of, and have control
over, the context switches of threads it is running.
The register scheduling function informs the
scheduler that the calling thread wishes to receive
notifications whenever the thread specified as an
argument is pre-empted or blocks due to external
conditions such as hardware I/O or message
queues that are registered. Further, all threads in
the system that are registered with this system call
are, among themselves, scheduled deterministi-
cally at all non-I/O non-preemptive context
switches (i.e. blocking). Any threads that are
spawned by threads that have been registered
inherit the registered characteristics of their parent.
In other words, pre-emptions of those threads, as
well as the first scheduling of those threads, also
generate notifications to the same callback routine
and they are added to the group of deterministi-
cally scheduled threads.

The callback routine is passed identifiers of both
the thread that is being pre-empted and the thread
that the scheduler would schedule next under its
deterministic policy. The callback routine can
change the selection of the next thread by returning
as the result an alternate thread (from the group of
registered threads) to be scheduled.

3.3 Using the Interface for Efficient
Repeatable Scheduling

Use of the calls to implement repeatable schedul-
ing based on a hardware instruction counter is rela-
tively straight forward. A single thread is used to
implement the replay manager. It launches the first
thread by creating it, registering it with the sched-
uler and setting its instruction counter to the maxi-
mum value. After the thread begins execution on
the replay scheduler is notified of any scheduling
pre-emptions that occur in it or any of its descen-
dant threads.

The pre-emption notification callback of the replay
manager records the instruction counter of the pre-
empted thread, obtained by reading its value, and
the thread that the operating system has indicated
will be run next.

In replay executions, the initial thread is started by
setting its instruction counter to the value it had at
its first pre-emption. Any child threads are also set
in the same way. When a currently executing
thread’s counter rolls over, the replay manager
wakes up, reads a record from the log it recorded
during the original execution, and determines
which thread is supposed to be scheduled next. At
the same time, it updates any counter values neces-
sary to ensure preemptions at appropriate counts.

4.0 Summary

Building upon our experiences with software-
based instruction counting for repeatable schedul-
ing, we have described an improved implementa-
tion in which the infrastructure of the system is
built into the operating system, and takes advan-
tage of hardware based instruction counting. This
new approach requires relatively few new OS ser-
vices, and yields a simple, high performance,
application transparent system for repeatable
scheduling.

5.0 Acknowledgments

We would like that thank Mootaz Elnozahy and
Zary Segall for their helpful discussions and

insights regarding applications for hardware
instruction counters.

6.0 References
[1] T. A. Cargill and B. N. Locanthi, “Cheap Hardware

Support for Software Debugging and Profiling,” in

Proc. Symp. on Architectural Support for Prog.

Lang. and Operating Syst., Palo Alto, CA, Oct.

1987, pp. 82-83.

[2] R. H. Carver and K. C. Tai, “Reproducible Testing of

Concurrent Programs Based on Shared Variables,”

in Proc. 6th Int. Conf. on Distributed Computing

Systems, Boston, MA., May 1986, pp. 428-432.

[3] P. Dodd and C. Ravishankar, “Monitoring and

Debugging Distributed Real-Time Programs,”Soft-

ware Practice and Experience, Vol. 22(10), Oct.

1992, pp. 863-877.

[4] E. Elnozahy, “An Efficient Technique for Tracking

Nondeterministic Execution and its Applications,”

Carnegie Mellon University technical report CMU-

CS-95-157

[5] M. Johnson, “Some Requirements for Architectural

Support of Software Debugging,” inProc. of the

Symp. on Architectural Support for Prog. Lang. and

Operating Syst., Palo Alto, CA, Mar. 1982, pp. 140-

148.

[6] T. J. LeBlanc and J. M. Mellor-Crummey, “Debug-

ging Parallel Programs with Instant Replay.”IEEE

Trans. on Computers, Apr. 1987, pp. 471-482.

[7] J. M. Mellor-Crummey and T. J. LeBlanc, “A Soft-

ware Instruction Counter,” inProc. Symp. on Archi-

tectural Support for Prog. Lang. and Operating

Syst., Palo Alto, CA, Apr. 1989, pp. 78-86.

[8] M. Russinovich and B. Cogswell, “Replay For Con-

current Non-Deterministic Shared Memory Appli-

cations”, U. of Oregon technical report CIS-TR-95-

18.

[9] K. C. Tai, R. H. Carver, and E. E. Obaid, “Debug-

ging Concurrent Ada Programs by Deterministic

Execution,”IEEE Trans. on Software Engineering,

Jan. 1991, pp. 45-63.

