Operating System Support for Replay of Concurrent
Non-Deterministic Shared Memory Applications

Mark Russinovich and Bryce Cogswell
Department of Computer Science
University of Oregon
Eugene, OR 97403
{mer,cogswell}@cs.uoregon.edu

Replay of shared memory program execution is desirable in many domains including cyclic debugging,
fault tolerance and performance monitoring. Past approaches to repeatable execution have focused on the
problem of re-executing the shared memory access patterns in parallel programs. With the proliferation of
operating system supported threads and shared memory for uniprocessor programs, there is a clear need
for efficient replay of concurrent applications. The solutions for parallel systems can be performance
prohibitive when applied to the uniprocessor case. We briefly present an algorithm, called the repeatable
scheduling algorithm, combining scheduling and instruction counts to provide an invariant for efficient,
language independent replay of concurrent shared memory applications. We focus on the design of a
general operating system exported framework that makes possible the use of hardware instruction
counters and scheduling notifications for efficient implementation of repeatable scheduling.

Keywords: Non-determinism, shared memory, repeatable execution, instruction counter

1.0 Introduction data, and dependence on external conditions such

as time. In many cases increased performance can
Repeatable execution is a crucial component dfe obtained by reducing the amount of synchroni-
cyclic debugging, performance monitoring andzation among processes sharing data, which leads
fault tolerance based on journaling. For exampleto the introduction of non-deterministic access pat-
in cyclic debugging bugs are located by repeatediterns. At other times a form of non-determinism,
running an application and then replaying execuealled arace, is inadvertently created through the
tions that exhibit erroneous behavior in order tancorrect implementation or omission of synchro-
isolate the cause of the problem. In fault toleranceajization.

programs running on a system that has failed can .
be recovered by starting them from a saved earlidP this paper we present an algorithm cafiepeat-

state and bringing them up to the state that existedP!€ schedulingg] for recording and replaying the

at the time of the failure by recreating inputs and*ecution of shared memory applications that has
other external events. several major advantages over existing approaches.

The technique is based on the fact that repeatable
The most difficult types of programs to replay areexecution can be obtained by recreating the sched-
those that contain non-determinism. Non-deteruled behavior of an application at instruction level
minism is present if an application given the samegranularity. This is accomplished through the use
inputs can obtain different states and possibly prosef an instruction counter [1][4][7] and a mecha-
duce different outputs across multiple executionsnism that makes the application’s schedule visible
Sources of non-determinism include asynchronout the replay system.
interrupts, concurrent or parallel access to shared

The remainder of this paper is organized as fol:In our algorithm we allow for non-determinism to
lows: Section 2.0 discusses our approach, knowhe introduced through shared memory accesses.
as Repeatable Scheduling and Section 3.0n a uniprocessor the ordering of shared memory
describes the general operating system support vaecesses is ultimately determined by how the pro-
are adding for efficient application replay. Finally,cesses or threads of an application are scheduled.
Section 4.0 summarizes with some conclusions. We therefore have extended the notion of an asyn-
chronous event in [7] to include preemptions per-
2.0 Repeatable Scheduling formed by the scheduler. In the original execution
an instruction count is saved at each preemption
While most existing solutions to shared memorypoint in the application, recording the exact place
replay are designed for parallel systems, our workn the execution where the pre-emption occurs, and
concentrates on uniprocessor concurrent executiothe identifier of the process or thread that it pre-
In a concurrent system running on a uniprocess@mpted. In a replay execution, the saved preemp-
only one process or thread of control will be exetion information is read and used to force
cuting at any given point in time. Non-determinismpreemptions at the same places in the execution.
arises in applications that share memory because
the interleaving of accesses to the shared data Gye two requirements that make a replay system
different processes or threads may be differerpossible are that the application’s schedule is visi-
across executions of the application given identicdple to the replay system and that an instruction
inputs. The key to efficient repeatable execution ofounter is provided to measure the progress of the
such applications is the realization that the interapplication.
leaving is controlled by the system scheduler. To]
precisely repeat the execution of a non-determinis2.2 Scheduling

tic shared-memory application the coarse-graineglrh |) K irack of the threads that
interleaving characteristics can be recreated b € replay system keeps frack of the threads tha

repeating the same schedule, ensuring that conteé&qst throughout an application’s execution. When

switches occur at exactly the same instruction,['[‘{:re?;]j s adr1e pc;eetr.r;.pted, ;h? rteple?/ systemt reciords
during replay as during the original execution. € threads identifier and instruction count vaiue

before waking up the next thread.

2.1 System Model To replay an execution the replay system reads pre-

The idea behind the repeatable scheduling ange_mptlon records ffom a!og and instead O.f preempt—
based on time-slices, use the instruction

rithm is partly based on past work in repeatablén

execution that focuses on replaying asynchronou%ounter to determine When o fqrc':e'preemptlons.
events [3][7]. In the previous work, the model iSBecause the scheduler is deterministic (an assump-

that of a single process where non-determinism igon discussed later), it performs the same schedul-

present in the form of asynchronous interrupts'.ng decisions as it did in the original run of the

Such interrupts can be delivered to a process at af plication, meaning that no information need be

instruction, and correct replay of a process that haI gged during context-switches that occur due to

received asynchronous events requires that Suﬁnct:rr:romzatlon d(S|'nce gh;ahstjhcceeQ|ng :hread Wl(';
events be replayed at the same instructions in ea € same during bo € original run an

repeated execution. This can be accomplished t;rgplay?[.hTthls entSltJ)reT that;he on)lg: scheddullr;g ?.eCI_
using an instruction counter, as in [7], to record th :pns a m?_s € zggle kgre OI‘Q}% tuhe t(') '|me—
number of instructions that have executed betwee?\'ce preemp lons an ocking on (the timing
of which can vary from run to run).

events and then controlling how many instructions
are executed in a replay before an event must be

recreated.

3.0 Operating System Support 3.1 Requirements

A repeatable scheduling system can be impleThe requirements for implementing an OS sup-

mented using either a hardware [5][4] or softwargPorted hardware based replay system are minimal,
[7] based instruction counter, and the necessa§nd can be divided into two categories: support for
scheduling support can reside in either user spad¢géading and writing the instruction counter and

or within the operating system. We have imple-scheduling support. These two areas will be dis-
mented a software instruction counter basegussed inturn.

approach in user space under the Mach 3.0 operat- . . .

ing system is described in [8], and the performanc-el-he purpose of the instruction counter is to mea-

. . . . sure the number of instructions that are executed
is shown to compare well to native execution time

(overhead of 10-15%). However, a number otby a threapl du_ring each 9f its timeslices, which
improvements to this system are made available b llows an identical execution profile to be recre-

making use of a hardware instruction counter sup-ted dy:mg replai/. Int.support (t)f thls’l the Otﬁ mustt]
ported by operating system extensions. associate an instruction counter value with eac

thread and provide read/write access to it during
Hardware instruction counters have been in gercontext switches among threads that are to be
eral use since about 1987 when HP introduced it€played. This is easily accomplished by having
HP-Precision architecture, and they have recentl{he OS save and restore the instruction counter
been implemented in the Pentium and Pentium Prgalue along with the remainder of the register set
processors. This trend indicates Wide_spreaQSSOCiated with each thread, and then send a signal

acknowledgment of the potential uses of hardwar@r message to the replay system with access rights
instruction counters. to the thread's context during context switches.

The advantage of using a hardware instructio®S scheduling support is more complicated,
counter is improved performance and, more imporbecause one of the predicates of the replay system
tantly, application transparency. In a softwares that scheduling is deterministic. Our definition of
based approach the code must be built into applic&eterministic scheduling is that the thread selected
tions at compile-time. Moving to a hardware-based0 run during each preemption or blocking opera-

counter allows replay to be accomplished withoution depends only on the sequence of previously
recompiling. scheduled threads and their associated instruction

counts. Beyond this requirement it is necessary to
Providing operating system hooks supporting suclllow the replay system to record the scheduling
a hardware instruction counter vastly simplifies thgjecisions made during the initial run, and then
replay system design, and lends greater flexibilityanforce that scheduling behavior during replay. OS
to the Schedullng pOlICIGS that are pOSSIble. This ISupport can be provided by Sending a message to
due to the fact that the OS is able to save anghe replay system during context switches indicat-
restore the instruction counter values at contextng the next thread to be scheduled, and allowing
switches and it is directly involved in performing the replay system to modify the decision if desired.
preemptions and scheduling decisions.

.2 Mach 3.0 Implementation
The remainder of this section will describethegen?‘ ach 3.0 plementatio

eral requirements for a hardware based operatingo support efficient repeatable scheduling, as well
system supported replay system, and then descrig other types of replay based on hardware instruc-
an implementation in progress using the Machion counters, we have designed a few simple, yet
operating system running on the Pentium procespowerful system calls that give applications the
sor. necessary power for replay with minimal intrusion
and overhead. The system calls are divided into

two general and distinct categories: those dealingalue determines the number of instructions exe-
with hardware instruction counters, and those deakuted before a thread that has registered a rollover
ing with application thread scheduling. callback will be notified.

The hardware instruction counter routines esser{lt mach_thread_get_instruction_counter(thread)

. . . thread_t thread;

tially export hardware instruction counter control

and visibility to user space, allowing a threads taCalls to this function return the current value of a

control and monitor the progress of other threadshread’s instruction counter.

Each thread has its own unique instruction counter _ .
void mach_thread_register_scheduling(thread,

value that measures the progress of the thread. sched_callback)

Uniqueness and repeatability are achieved by haYnread t thread: B

ing the operating system record counts for onlythread t sched_callback:

instructions executed by the threads in user-spacécallback definition */

(i.e. instruction counting for a particular threadthread_t sched_callback(thread_t prev,

would stop on any transition of control from the thread_t next);

thread to the operating system and start on any, order to support repeatable scheduling, the
transition in the reverse direction). replay manager must be aware of, and have control

Listed below are the user-level call prototypes andVe" the.context swnches of thrgads_lt IS running.
The register scheduling function informs the

descriptions for the replay functions, which are

actually library routines that sit on a message§ChedUIer that the calling thread wishes to receive

based system call interface, that are added to prg_otlflcatlons whenever the thread specified as an

vide an application-level abstraction to a hardwar@rgl;T,ent IS pri—emptid ((;I’ blockls/(;jue to external
instruction counter. conditions such as hardware or message

queues that are registered. Further, all threads in
void mach_thread_register_counter(thread, the system that are registered with this system call
rollover_callback) are, among themselves, scheduled deterministi-
thread_t thread,; .
thread_t (*rollover_callback)(); cally at all non-/O non-preemptive context
/* callback definition */ switches (i.e. blocking). Any threads that are
void rollover_callback(thread_t thread); spawned by threads that have been registered

. _ _ . inherit the registered characteristics of their parent.
This call registers a thread with the operating sysy, other words, pre-emptions of those threads, as

tem for instruction counting. It can only be madeyyg|| as the first scheduling of those threads, also
on threads currently in a suspended state and tyRinerate notifications to the same callback routine

cally iS_ gsed just after a thread is created, bulpg they are added to the group of deterministi-
before it is allowed to execute. The callback fU”C'caIIy scheduled threads.

tion is a routine that is called in the registering

thread’s context whenever the instruction counteifhe callback routine is passed identifiers of both

of the target thread rolls over. The callback procethe thread that is being pre-empted and the thread
dure can be used to monitor or control the execuhat the scheduler would schedule next under its

tion of the application. deterministic policy. The callback routine can
void mach_thread_set_instruction_counter(thread, change the selection of the next thread by returning

- - “countval) as the result an alternate thread (from the group of
thread _t thread; registered threads) to be scheduled.

int countval;

This call simply sets the specified thread’s instruc-
tion count to the indicated value. The counter’s

3.3 Using the Interface for Efficient insights regarding applications for hardware
Repeatable Schedullng Instruction counters.

Use of the calls to implement repeatable schedu.0 References

ing based on a hardware instruction counter is rela-

tively straight forward. A single thread is used tolt! T- A- Cargill and B. N. Locanthi, “Cheap Hardware
implement the replay manager. It launches the first Support for Software Debugging and Profiling,” in
thread by creating it, registering it with the sched- Proc. Symp. on Architectural Support for Prog.
uler and setting its instruction counter to the maxi- Lang. and Operating SystPalo Alto, CA, Oct.
mum value. After the thread begins execution on 1987 pp. 82-83.

the replay scheduler is r?Otl_f'ed of any _SChedu“nQZ] R. H. Carver and K. C. Tai, “Reproducible Testing of
pre-emptions that occur in it or any of its descen-

dant threads. Concurrent Programs Based on Shared Variables,

in Proc. 6th Int. Conf. on Distributed Computing
The pre-emption notification callback of the replay SystemsBoston, MA., May 1986, pp. 428-432.
manager records the instruction counter of the pr§3) p. podd and C. Ravishankar, “Monitoring and
empted thread, obtained by reading its value, and
the thread that the operating system has indicated
will be run next.

Debugging Distributed Real-Time ProgramSgft-
ware Practice and Experiencéd/ol. 22(10), Oct.
1992, pp. 863-877.

In replay executions, the initial thread is started by4] E. Elnozahy, “An Efficient Technique for Tracking
setting its instruction counter to the value it had at Nondeterministic Execution and its Applications,”
its first pre-emption. Any child threads are also set
in the same way. When a currently executing
thread’s counter rolls over, the replay manager
wakes up, reads a record from the log it recordel?
during the original execution, and determines Support of Software Debugging,” iRroc. of the
which thread is supposed to be scheduled next. At Symp. on Architectural Support for Prog. Lang. and

the same time, it updates any counter values neces- Operating SystPalo Alto, CA, Mar. 1982, pp. 140-
sary to ensure preemptions at appropriate counts. 4g

Carnegie Mellon University technical report CMU-
CS-95-157
] M. Johnson, “Some Requirements for Architectural

[6] T. J. LeBlanc and J. M. Mellor-Crummey, “Debug-
ging Parallel Programs with Instant ReplaffEE

4.0 Summary

Building upon our experiences with software- Trans. on Computerd\pr. 1987, pp. 471-482.
based instruction counting for repeatable schedu[¥] J. M. Mellor-Crummey and T. J. LeBlanc, “A Soft-
ing, we have described an improved implementa- ware Instruction Counter,” iRroc. Symp. on Archi-
tiop ip which the infrastructure of the system is (ectyral Support for Prog. Lang. and Operating
built into the operating system, _and take_s advar]- Syst, Palo Alto, CA, Apr. 1989, pp. 78-86.
tage of hardware based instruction counting. Thi o .

. . 8] M. Russinovich and B. Cogswell, “Replay For Con-
new approach requires relatively few new OS ser- o)

current Non-Deterministic Shared Memory Appli-

vices, and yields a simple, high performance, o _
application transparent system for repeatable cations”, U. of Oregon technical report CIS-TR-95-

scheduling. 18.
[9] K. C. Tai, R. H. Carver, and E. E. Obaid, “Debug-
50 Acknowledgments ging Concurrent Ada Programs by Deterministic

Execution,”IEEE Trans. on Software Engineerjng

We would like that thank Mootaz Elnozahy and . 1991, pp. 45-63.

Zary Segall for their helpful discussions and

