
Event Composition in Time-dependent Distributed Systems

C. Liebig, M. Cili a†, A. Buchmann

Database Research Group - Department of Computer Science
Darmstadt University of Technology - Darmstadt, Germany
{ chris, cilia, buchmann}@dvs1.informatik.tu-darmstadt.de

Abstract

Many interesting application systems, ranging from work-
flow management and CSCW to air traffic control, are event-
driven and time-dependent and must interact with heteroge-
neous components in the real world. Event services are used
to glue together distributed components. They assume a vir-
tual global time base to trigger actions and to order events.
The notion of a global time that is provided by synchronized
local clocks in distributed systems has a fundamental impact
on the semantics of event-driven systems, especially the com-
position of events. The well studied 2g-precedence model,
which assumes that the granularity of global time-base g can
be derived from a priori known and bounded precision of
local clocks may not be suitable for the Internet where the
accuracy and external synchronization of local clocks is best
effort and cannot be guaranteed because of large transmis-
sion delay variations and phases of disconnection. In this
paper we introduce a mechanism based on NTP synchronized
local clocks with global reference time injected by GPS time
servers. We argue that timestamps of events can be related to
global reference time with bounded accuracy and propose
that event timestamps are modeled using accuracy intervals.
We present algorithms for event composition and event con-
sumption which make use of accuracy interval based times-
tamping and illustrate the problems that arise due to
inaccuracy and message transmission delays.

I. Introduction

Event-based computing is an emerging paradigm for
composing applications in open, heterogeneous distributed
environments [4,23,20,13]. Applications like workflow man-
agement [7,19,14], CSCW [5] and monitoring applications
ranging from Air Traffic Control [3,29] to Health Care Sys-
tems [12] may be constructed by leveraging event services for
detection and distribution of events in a publish/subscribe
manner. The use of generic event services requires that the
semantics of event services that is presented to the application
developer be not only formally specified [45,49] but also
unambiguous. Faili ng to do so may cause mission-critical

applications to malfunction or behave indeterministically, and
may result in unreliable software and impose unacceptable
risks.

The use of absolute and relative temporal events to trig-
ger actions, the need to measure duration of activities, and the
detection and composition of events that may originate in dis-
tributed components that are loosely coupled render distrib-
uted event-driven systems time-dependent. A well defined
event service depends on three basic factors: the proper inter-
pretation of time, the adoption of partial order of events and
the consideration of transmission delays between producers
and consumers of events. In order to describe and detect com-
plex situations, advanced event services provide the notion of
composite events. Typically we are interested in causal
dependencies between real-world happenings or computa-
tions. Temporal order is a prerequisite for causal order. There-
fore, potential causality can be detected - or excluded - when
examining the order of event occurrences. However, occur-
rence time and global order of events can only be determined
by an omniscient external observer. In practice, detection and
timestamping of events is delayed from the instant of occur-
rence. Additionally, time as provided by a distributed time
service is imprecise with respect to clock readings at different
nodes and inaccurate with respect to physical time. As a con-
sequence, timestamps are inherently inaccurate and may dis-
tort the real order of occurrence of events. The inabilit y to
provide precise and accurate timestamps has additional
impact on event consumption, i.e. the selection of events that
are to be composed. Consumption policies like recent and
chronicle rely upon the temporal order of events when select-
ing the latest events (recent) or the oldest events (chronicle)
out of the event stream. Furthermore, event consumption must
contemplate variable transmission delays, especially in the
case of multiple, independent remote publishers.

In this paper we focus on timestamping and composition
of events in large scale, loosely coupled, distributed systems
without centralized management, like the Internet. Unpredict-
able bounds and large variations on message transmission
delays, possible phases of disconnection and independent
failure modes are characteristic for such an environment and
complicate the realization of a general purpose event service.
In particular, it is not possible to determine a-priori the preci-
sion bounds for all l ocal clocks in the system. Therefore, we† Also ISISTAN, Faculty of Sciences, UNICEN, Tandil , Argentina.



argue that ordering of events based on a sparse time base or
the 2g-precedence model does not scale up to the Internet.
In our solution we make use of the Network Time Protocol
(NTP). 

The remainder of this paper is organized as follows.
Next, an overview of related work is presented. Section II I.
introduces the concept of global time based upon synchro-
nized local clocks. We give a brief overview on NTP time
services and then present a mechanism for timestamping
events based upon accuracy intervals. We introduce an
accuracy interval order that is the basis for event composi-
tion and consumption. Section IV. shortly describes the
architecture of our event service. After that we discuss the
implementation of simple event composition operators and
point out the potential pitfalls due to the very nature of dis-
tributed systems. Finally we address open issues and
present current and future work.

II. Related Work

General-purpose event notification services have been
proposed recently as part of major middleware initiatives
[37,38,39,20,31]. However, most of them are restricted to
primitive events and do not consider any consumption poli -
cies.

Composition of events was proposed together with the
concept of Event-Condition-Action rules in active data-
bases [10]. Active databases support composite events but
assume the existence of a totally ordered event history, and
therefore, are restricted to centralized systems. Active data-
bases handle database events, temporal events, and user-
defined events. HiPAC [11] considered ECA rules in gen-
eral, and provided basic mechanisms for composite event
specification. Compose [18] introduced powerful event
operators. Snoop [8] introduced a formal definition of prim-
itive and composite events based on a global history log,
and four event consumption policies: recent, chronicle, con-
tinuous and cumulative. Reach [6] provided mechanisms
for eff icient detection and composition based on the
SAMOS [16] algebra. Ode [22] proposed complex event
composition but used timestamps for event identification
and required a total ordering. Recent efforts have concen-
trated on unbundling database functionality to provide,
among others, active functionality services through config-
urable components [17,25]. None of the previously men-
tioned approaches has addressed properly the problems of
global time, imprecise timestamps of events, and composi-
tion delays. Instead, they all assume a total ordering of
events.

In [27], Lamport presented the happened before rela-
tion, which defines a partial ordering of events based on the
causality principle. An event a happened before an event b
(depicted ) if a could have influenced b; a and b are
said to be causally dependent. If neither  nor ,
the events are said to be concurrent and causally indepen-
dent. A system of logical clocks is introduced which
assigns a natural number to each event (logical timestamp).
Logical clocks are consistent with causality [41]: if ,
then a's timestamp is smaller than b's timestamp - the con-

trary is not true. In [41] the concept of vector time is pre-
sented and it is shown that vector time characterizes
causali ty: two events are ordered by vector time iff they are
causally dependent. However, neither logical clocks nor
vector clocks can deal with causal relations that are estab-
lished through hidden channels and also can not represent
timed real world events. Thus they are not appropriate for
open systems. 

In [24,47] a global time approximation is proposed,
assuming that the maximum time difference between any
two clocks at the same instant of time is bounded by . The
granularity condition states that the granularity of the glo-
bal time-base g should not be smaller than , , ensur-
ing that global clocks do not overlap. A global and total
order of events can be determined if event timestamps are
two or more clock ticks apart, a fact known as 2g-prece-
dence. If this assumption does not hold in all cases, one has
to face partial ordering of events.

Schwiderski [42] adopted the 2g-precedence model to
deal with distributed event ordering and composite event
detection. She proposed a distributed event detector based
on a global event tree and introduced 2g-precedence based
sequence and concurrency operators. However, event con-
sumption is non-deterministic in the case of concurrent or
unrelated events. Additionally, the violation of the granular-
ity condition may lead to the detection of spurious events.

The Cambridge Event Architecture (CEA) [2] presents
the publish-register-notify paradigm. Mediators provide the
means to compose events. CEA is oriented to support mul-
timedia, mobility, group interaction and composition of het-
erogeneous software components [5]. The implementation
of CEA is based on a proprietary RPC system, limiting
interoperability. Recently, COBEA [31] was proposed,
which extends the CORBA Event Service [37] with the
CEA publish-register-notify paradigm, supporting fault tol-
erance, composite events, server-side filtering and access
control.

In EVE [19,45] an event-based middleware layer is
proposed as platform for a workflow enactment system.
The workflow is mapped to services and brokers. The
behavior of brokers is defined by ECA-rules using compo-
sition of distributed events. Specifically, EVE requires
chronicle consumption mode of events to correctly interpret
workflow notifications.

In CEA, COBEA and EVE, the detection of global
composite events is based on Schwiderski's approach. 

[49] presents a formal refinement of Schwiderski's
approach and extends the Snoop event algebra to support
event composition in distributed environments. 

The 2g-precedence based approaches cited above do
not scale to open systems and still are ambiguous with
respect to event consumption.

III. Timestamping and Global Time

We will give a short overview of the concept of global
time and distinguish between internal and external clock
synchronization algorithms. We then present how we lever-
age upon a time service like NTP for provision of a global

a b→
a b→ b a→

a b→

δ

δ g δ>



reference time and introduce the concept of accuracy inter-
vals. We define abstract interfaces for local as well as glo-
bal clock readings used for timestamping events.

If we are merely interested in relative ordering of
events detected at the same node, a monotonically increas-
ing counter, e.g. the local clock reading, might be sufficient.
In the real world, we must differentiate between the occur-
rence of an event and the time it takes until detection. We
have to distinguish the case where it can be assured - at the
application level - that occurrence and detection of distinct
events never overlap such that timestamps at detection time
always reflect the order of occurrence. The more realistic
scenario is however, that timestamping of local events does
not yield a total order because there is uncertainty about
occurrence time and detection time of events. We will
therefore define a - partial - local order that recognizes this
fact and a - partial - global order that additionally respects
the inaccuracy which is inherent in the artificial notion of
reference time.

A. Clock Synchronization

The instant of time at which an event occurs in the
physical world will be called the physical time of the event.
Reference time RT - as provided by UTC or GPS time - is a
granular representation of dense physical time. Note that
reference time is a conceptual artifact and inaccurate by
nature. In fact GPS time servers carry an error encompass-
ing relativistic effects as well as more significant inaccura-
cies due to synchronization and clock reading errors.

In order to provide a global timebase in distributed
systems, a common solution is to create a virtual clock at
each node using a local hardware clock. The clock synchro-
nization problem consists of reaching some degree of
mutual consistency between virtual clocks and compensat-
ing for hardware clock skew and frequency drift. Note, that
perfect synchrony cannot be achieved by the very nature of
our universe.

A virtual clock is represented by a function
that maps reference time to

clock time CT. A hardware clock typically consists of an
oscill ator and a counting register that is incremented by the
ticks of the oscill ator. The hardware clock has a certain
granularity G by which the counter can be incremented. For
a local hardware clock to be correct, we require a bounded
drift rate:

Linear Envelope: 

For most modern hardware clocks the constant ρ is in
the order of 10-4 to 10-6, i.e. the clock drifts more than 0.06
milli seconds in one minute which compares to 6000
instructions on a 100 MIPS machine.

Internal clock synchronization consists of keeping vir-
tual clocks within some maximum deviation from each
other, i.e. for all correct clocks Ci, Cj it is guaranteed:

Precision:  

External clock synchronization aims at maintaining
virtual clocks within some maximum deviation from a time
reference external to the system, i.e for each correct clock
Ci it is guaranteed:

Accuracy: 

Internal clock synchronization algorithms [43,26,30]
guarantee precision in case of known bounds on transmis-
sion delays of the network. Otherwise, internal clock syn-
chronization is best effort [9,46] and precision δ cannot be
a-priori determined for all t. As accuracy α always implies
precision 2α, externally synchronized clocks are also inter-
nally synchronized. At the opposite, internally synchro-
nized clocks do not necessarily maintain accuracy with
respect to external reference time. If accuracy is a require-
ment, internal clock synchronization algorithms can be
integrated with external clock synchronization as in recent
hybrid clock synchronization algorithms [15,40,46].

Timestamping based on internal clock synchronization
and the application of the 2g-precedence model [42,47] for
ordering and composing events does not scale to loosely
coupled distributed systems like the Internet. As transmis-
sion delays vary significantly and are in general not known
a-priori for all nodes of the network, it is not feasible to
determine a precision δ that holds for all t. For the same
reason such an approach is not suitable for mobile environ-
ments [44] with long phases of disconnection. In fact, the
above approaches merely present viable solutions for sys-
tems interconnected by real-time networks or selected
broadcast based LANs with restricted load patterns, where
at design time it is possible to determine and guarantee a
bound on δ for all instants t and all virtual clocks of the sys-
tem [47].

B. Time Service

The Network Time Protocol defines an architecture for
a time service and a protocol to distribute accurate time
information in a large, unmanaged global-internet environ-
ment and is established as an Internet Standard protocol
[33]. The participating nodes form a logical synchroniza-
tion subnet whose levels are called strata. Primary servers
at stratum 1 are directly connected to a time source such as
a radio clock or a GPS receiver and provide accurate UTC
reference time with an error ranging from some milli sec-
onds down to a few microseconds [21] - whereas GPS time
itself is accurate in the order of 30 nanoseconds [28]. Sec-
ondary servers at stratum 2 synchronize their clock with
respect to stratum 1 peers plus other servers of stratum 2,
servers at stratum 3 synchronize with stratum 2 peers and
so on. The synchronization scheme consists of a peer selec-
tion algorithm and estimation of the offset for the local
clock with respect to reference time provided by the
selected peer. The peer selection algorithm chooses the best
peer which is supposed to provide reliable and accurate
time information. Calculating an estimation for the clock
offset is based on exchanging timestamps between peers, as
proposed by Cristian [9]. Additionally, statistical filters are
applied to a recent sample population which significantly

C t( ): RT CT CT RT⊂,→

   s,t RT : s t≤∈
 1 ρ–( ) t s–( ) G– C t( ) C s( )– 1 ρ+( ) t s–( ) G+≤ ≤

δ : Ci t( ) Cj t( )– δ , t RT∈≤∃

α : Ci t( ) t– α , t RT∈≤∃



reduces the error of the estimated offset. A detailed perfor-
mance study of NTP can be found in [34]. 

C. Timestamping of Events

NTP provides a reliable error bound, the synchroniza-
tion distance, that accounts for inaccuracies due to clock
skew and offset estimation along the path to the primary
reference server, plus the inaccuracy of the primary server’s
clock with respect to reference time. In [35] a new system
call ntp_gettime() is introduced for reading the virtual
global clock that additionally returns a reliable error bound
with respect to reference time. The CORBA TimeService
[36] proposes an abstract interface that supports clock read-
ings and additionally returns an error bound, the purpose of
which is to wrap existing time service implementations
such as NTP or DCE TimeService. In the following we will
present our abstract view on a clock reading interface for
which the above approaches provide a viable implementa-
tion. Let us first introduce the notion of accuracy intervals
as proposed in [32,40].

Accuracy Interval: We define the accuracy interval with
reference point tref ∈ RT and accuracy [α-;α+]; α-,α+ ∈ RT
as: . 
For convenience we use the shorthand notations [tref ± α],
α=[α-;α+], lower([α-;α+])=α- and upper([α-;α+])=α+.

Global Time Service: The global time service provides a
function get_time() - when called at physical time t,
get_time() returns the reading of the local virtual clock C(t)
together with a reliable error bound synchdistt.
We require the global time service to be correct.

Correctness of Time Service: If get_time() is called at
physical time t and returns C(t) with error synchdistt then:

Let tocc(e) be the instant of time when event e
occurred. Actually, it takes some time ldd until the event is
detected and is assigned a timestamp. We call ldd the local
detection delay and denote with tdet(e) the detection time of
the event. In the following, we assume that an individual
upper bound ldd is known for each node of the system.

Local Detection Delay: 

The effect of the delay depends largely on the signal-
ling source. For example, the minimum delay in the detec-
tion of a local method event is caused by a timer system
call . On a SUN SS10 with two CPUs at 55 Mhz the timer
system call takes about 5 µsec and it takes about 0,5 µsec
on a SUN Ultra II with two CPUs at 300 Mhz, whereas the
granularity G of the local clock is 1 µsec in both cases. 
In other words, the impact of ldd may be insignificant com-
pared to the inaccuracy imposed by the clock granularity on
the fast machine. However, on slow machines like the SS10
or in cases where the event is signaled by some external
device, ldd may be significantly larger then clock granular-
ity and additionally increases the inaccuracy of the global
timestamp.

The local detection delay is taken into account by
timestamping event e as:

Global Timestamp:

The fact that the global timestamp ts(e) contains tocc(e) can
easily be seen from the above definitions, because

and .
We denote the length of the error interval α as the inaccu-
racy of the timestamp.

D. Ordering of Events

We define a partial order on accuracy intervals as follows:

Accuracy Interval Order: 

Accuracy interval order is merely a partial order. Obvi-
ously there exist accuracy intervals I j, Ik such that neither
I j<Ik nor Ik<Ij holds. We define the order of two events to be
uncertain if they cannot be ordered and introduce the nota-
tion . As we cannot decide
on the order of events in such cases, the event service
should take well defined actions, as we will discuss later on.
Depending on the application, the inaccuracy of timestamps
can be small with respect to the temporal offset between
causally dependent events. In this case, a well defined
application should never generate uncertain events. How-
ever, if uncertain event orders occur, they should be
resolved by application semantics. It should be noted at this
point, that the worst resolution policy, i.e. ignoring the
uncertainty of event order, does not perform worse then pre-
vious approaches discussed in Section II . 
With our approach we can guarantee in all cases that:
•situations of uncertain event order are detected and the
action taken is well defined

•events are not erroneously ordered.
More precisely, we can guarantee that accuracy interval
order is consistent with physical time order, i.e. the follow-
ing important property holds:

Time Consistent Order: Given events ej, ek and

This proposition follows directly from the previous
definitions of global timestamp and accuracy interval order,
under the assumption that the time service is correct. 

If the expected values of synchdist are suff iciently
small, for example when detecting events at a stratum 1
server attached to GPS, it may be sufficient to order events
based on ordering of global timestamps, as defined above.
In many settings however, event detection runs at nodes of a
lower stratum and reading the clock results in large synch-

I tref( ) tref α-
tref α+

+;–[ ]≡

t C t( ) synchdistt C t( ) synchdistt+;–[ ]∈

ldd∃ RT : tocc e( ) tdet e( ) ldd tdet e( );–[ ]∈∈

ts e( ) C tdet( ) α±[ ]=

α synchdisttdet
ldd synchdisttdet

;+[ ]=

tocc e( ) tdet e( ) ldd– C tdet( ) synchdisttdet
ldd––≥ ≥

tocc e( ) tdet e( ) C tdet( ) synchdisttdet
+≤ ≤

Ij rj αj±[ ] Ik rk αk±[ ]=,=

Ij Ik< s∀ Ij t∀ Ik∈,∈  : s t<⇔

 rj αj
+

+ rk αk
-

–<⇔

Ij Ik⊥ Ij Ik<( )¬ Ik Ij<( )¬∧≡

ts ej( ) Ij tdet ej( )( ) ts ek( ) Ik tdet ek( )( ) then=,=

Ij Ik< tocc ej( ) tocc ek( )<⇒



dist values (10-50 msec and more) with respect to the gran-
ularity of the local clock. Therefore we additionally provide
a mechanism for the relative ordering of events - originating
from the same node - based on local clock readings. 

We assume that the local clock is monotonically
increasing and that clock discipline by NTP uses continu-
ous amortization. Let ej, ek be events originating at the same
node, then we assign the local clock readings as local times-
tamps:

Local Time Stamp: If ej is detected at node N with local
detection delay ldd we define: .

We are interested in a time consistent order for local
timestamps. We know from the definition of local detection
delay, that . In
other words we have to find a lower bound for the distance

, which can only be approximated by local
clock readings. Let us assume that there are no resynchroni-
zations between the two clock readings, then we know from
the linear clock drift, that .
Additionally we have to consider rate adjustments by the
clock discipline. For simplicity, we assume that there is a
known upper bound u for a positive rate adjustment
between two resynchronization points. Then we obtain:

We now can specify the condition to order local times-
tamps while considering the local detection delay:

Local Timestamp Order: Let  be local
timestamps of events detected at the same node.

We refer to Schmid and Schossmaier [40] for a
detailed discussion on how to estimate duration measure-
ments using local clock readings, where they also discuss
various models of local clocks and clock discipline mecha-
nisms.

IV. Notification Service

In this section we describe the overall architecture of
our event notification service and look into the implementa-
tion details of event composition using accuracy interval
based timestamping. Fig. 1. depicts the main components of
the event notification service.

The architecture is similar to that of a push-style
CORBA Notification Service [38]. Producer and consumer
of events interact with the event channel through proxy
interfaces: ECPI (producer) and ECCI (consumer). The
channel itself is a conceptual artifact realized on top of mul-
ticast messaging middleware that provides a subject-based
addressing scheme [39]. Producers of events register meta-
data for event type descriptions with the EventTypeReposi-
tory. Consumers as well as other producers may query the
repository to find out about existing event types. If a sub-

scriber registers interest for some type of event an appropri-
ate ECCI proxy will be returned. This proxy is created by
an administrative factory object and relays primitive event
notifications received by the multicast messaging layer to
the consumer. A producer publishes events through the call
of ECPI::signalEvent(Event e) which also adds a local and
global timestamp and the producer name to the event
parameters. A consumer may connect directly to the ECCI
proxy to be notified of primitive event occurrences. Com-
posite events are detected by specialized ECCI proxies: In
the first stage primitive events are captured by InputNodes
(I), encapsulating the appropriate ECCI, and then passed on
to the CompositionNode (C) where the operator logic is
implemented and consumption takes place. Finally, if a
composite event is detected, it is signaled to the consumer.
As we will show later, the CompositionNode may raise
exceptions to inform the application of ambiguities in the
case when candidate events cannot be ordered.

Fig. 1. Notification Service Architecture.

Events are reliably delivered to subscribers by the
underlying messaging middleware and it is also guaranteed
that events are sent by a producer in the detection order and
that this order is preserved by the channel.

A publish/subscribe event service per definition must
support many-to-many communication. As a consequence
the semantic of group membership impacts the Composi-
tionNode subscribers, because we need to know which pro-
ducers might have sent events that must be considered for
composition. We provide two different group membership
semantics: atomic membership and weak membership.
When using atomic membership, a producer registers with
the DirectoryService and must not start sending events
before all consumers, which are subscribed to the respective
type of events, have been notified of the new group mem-
ber. We leverage on the event service itself to reliably
broadcast dedicated control events, such as a group mem-
bership change event. When subscribing for some type of
event a consumer may also request a list of currently active
publishers. In the case of weak membership we delegate to
the dynamic discovery protocol provided by the multicast
messaging middleware. In that case a publisher can register
without blocking at the DirectoryService. It is then possible

lts ej( ) C tdet ej( )( )=

tdet ej( ) tdet ek( ) ldd–< tocc ej( ) tocc ek( )<⇒

tdet ek( ) tdet ej( )–

C t( ) C s( )– 1 ρ+( ) t s–( ) G+≤

C tdet ek( )( ) C tdet ej( )( )– 1 ρ+( ) tdet ek( ) tdet ej( )–( ) G u+ +≤

 ldd
C tdet ek( )( ) C tdet ej( )( )– G– u–

1 ρ+( )
---------------------------------------------------------------------------< tdet ek( ) tdet ej( )–≤⇒

lts ej( ) lts ek( ),

lts ej( ) lts ek( )<

 ldd
C tdet ek( )( ) C tdet ej( )( )– G– u–

1 ρ+( )
---------------------------------------------------------------------------<⇔

E C P I

A

producer

A::event

N TP
stra tum  2

consum er

m ulticas t
m essag ing

E C C I

A
E C C I

C

C::event

A::event

consum er

I I

C

O

direc tory

fac tory

repos ito ry

E C A dm inN TP
stra tum  1

G PS

E C C I

E C C I

A

E C C I

B

pu
bl

ish

subscribe

co
nt

ro
lge

tti
m

e(
) accuracy

interval



that some events of the joined publisher arrive late and
invalidate former event compositions. Atomic membership
prohibits such errors.

As will be discussed in the next section, we introduce
a windowing scheme combined with heartbeat events to
cope with node failures of consumers and network failures
like poor response times or partitioning of the network.

V. Composition and Consumption

To ill ustrate the impact of timestamp inaccuracy and
varying transmission delays on event composition and con-
sumption we will l ook at the simple composite event
expression A&B, which depicts the situation that an event
of type A and an event of type B occurred. Although the
logic of the operator does not seem to impose any ordering
constraints, consumption of events must be considered.
Assume there is one producer PA for type A events and
there are two producers P1B, P2B for type B events which
signal to an A&B CompositionNode, as shown below: 

Fig. 2. Scenario.

There can be multiple A events and multiple B events,
even from different nodes, that are candidates to make up
the composite event. In chronicle consumption mode we
want to combine the oldest As and Bs. In recent consump-
tion mode we are looking for the latest events, i.e. lately
occurred events will rule out older ones. In the following,
we will assume that the CompositionNode contains a par-
tially ordered list for each operand. Let POList<A> be a
data structure that holds type A events and POList<B> the
one to hold type B events. The method POList<>.oldest()
returns the set of oldest events which are those events that
are not preceded by any other in the POList<>: 

Note that oldest() may benefit from the fact that there
is only one producer for type A events and there is no need
to relate to reference time, as it would be when implement-
ing the sequence operator. The optimization then would be
to use the local timestamp order instead of the global times-
tamp order.

A. Window Mechanism

We mentioned in the beginning, that we have to con-
sider the impact of individual transmission delays. The time
diagram shown in Fig. 3. il lustrates the problems that may
arise. With the arrival of at time t1 we detect a tentative
composite  event. However, we must consider the
possibilit y that there is another A event on its way, which
occurred at approximately the same time as a0, i.e. .
When a1 arrives at t2 we now can be sure that a0 is the old-
est A event and must be considered for composition. In the

case of B events we have to additionally consider the fact
that there are two producers, i.e. when receiving  there
could be events both at P1B and P2B that have not yet been
delivered but would be element of POList<B>.oldest(). In
general, we require POList<B>.oldest() to be stable before
constructing a composite event. We are using a window
mechanism with so called sync-points to separate the his-
tory of events as seen by the CompositionNode - reflected
in the operand POList<> data structures - into the stable
past and the unstable past and present that still are subject
to change.

Fig. 3. Time diagram (global timestamps).

We define the local sync-point  with respect
to a producer PA to denote the fact that there are no more
events a detected at PA that have not been signaled to the
CompositionNode and . The local
sync-point moves on with each event detection and is deter-
mined by approximating a local clock value that is at least
ldd below the local timestamp of the latest event. In a simi-
lar way we define the global sync-point  of a pro-
ducer PA such that there are no more events a at PA that
have not been signaled to the CompositionNode and

. Whereas the local sync point
refers to local clock time the global sync-point relates to
reference time. Obviously, the global sync-point with
respect to a producer PA is equivalent to the lower end of
the global timestamp of the latest detected event. In fact,
with each event received by the consumer the respective
sync-point windows move along1. For example in Fig. 3.
the global sync-point for P1B is  when 
is received and moves to . We call
POList<B>.oldest() to be stable, if there are no more pend-
ing events b such that b would also belong to
POList<B>.oldest(). If all global sync-points are at the
right of the oldest timestamp in POList<B>.oldest() then
there can be no pending event that intersects with all times-
tamps in POList<B>.oldest(). Without proof we present the
formal predicate for stability.

Stability: Given POList<E> and the known set of produc-
ers for E events, PR(E):

By definition we consider the empty set not to be stable.

Com position
Node
A&B

P A

P 1
B

P 2
B

m u ltica st
m e ssa g in g

In p u tN o d e A

In p u tN o d e B

T::e POList<E>.oldest() : ∈∀
e' POList<E>.oldest() : ∈ ts e'( )∃ ts e( )<( )¬

b
1
0

a0& b
1
0

a0 a1⊥

1. Special attention is needed, when the synchdist error signifi-
cantly increases

b
1
0

P A

P 1
B

P 2
B

R T

a0 a 1

a2

b 1
0 b 1

1

b 2
0 b2

1

t1 t3t2

ltssync PA( )

lower lts a( )( ) ltssync PA( )<

tssync PA( )

lower ls a( )( ) tssync PA( )<

t1 lower b
1
0( )= b

1
0

lower b
1
1( )

is_stable POList<E>.oldest()( )  ⇔

 
mine POList<E>.oldest()∈ upper ts e( )( )( )  <

min PE PR E( )∈∀ tssync PE( )( )



B. Composition

Now that we can determine if the candidate sets are
stable, we can present the algorithms for conjunction using
the chronicle policy. The activity diagram below shows the
execution flow when processing incoming events. First the
sync-points are updated with respect to the sender of the
event.

Fig. 4. Activity diagram.

Then we evaluate the operand lists and check if there
are stable events that can be composed. At the end we clean
up the operand lists. Below we sketch the algorithms imple-
mented in the CompositionNode:
SignalEvent(Event e):{

switch typeof(e)
case heartbeat: break;
case A: POList<A>.add(e);

update_sync_points(e);
while( evaluate() );
cleanup();
break;

case B: // analogous to above
}

evaluate: returns boolean {
// AND-chronicle

Set<A> oldest_a; Set<B> oldest_b;
if (not_empty(POList<A> and not_empty(POList<B>))

oldest_a=POList<A>.oldest();
if (is_stable(oldest_a))

if (sizeof(oldest_a) > 1)
// (exception multiple a)

oldest_b=POList<B>.oldest();
if (is_stable(oldest_b))

if (sizeof(oldest_b) > 1)
// exception (multiple b)

compose(oldest_a, oldest_b);
return (TRUE); // A & B 

else
// expect sync-point to increase
return(FALSE);

else
// expect sync-point to increase
return(FALSE);

return(FALSE);
}

C. Heartbeat

In the case that oldest_a or oldest_b is not stable yet,
we must wait for the global sync-points to be increased.
This will either be in case of following A or B events,
which again trigger the evaluation algorithm, or in case
heartbeat events are signaled. We require producers to sig-

nal events with a minimum frequency. If the event stream is
less frequent or no more events occur at some producer
node, the producer will generate an artificial heartbeat event
for the sake of increasing the sync-point window. When a
producer crashes or the network is partitioned for long peri-
ods then the CompositionNode could be blocked - possibly
indefinitely. This problem is dealt with by using timeouts in
the InputNode which in turn raise an exception at the con-
sumer.

D. Accepting Uncertainty

Because the accuracy interval order is only a partial
order of events, the situation may arise that we cannot
uniquely identify an oldest event. As can be seen from the
definition of the oldest() method, the result may be a set of
events, with uncertain temporal order. In the above example
of Fig. 3., oldest_b contains  and . This situation is
considered to be exceptional in a sense that the event ser-
vice cannot guarantee the proposed semantic of chronicle
consumption. Therefore we explicitly raise an exception.
Alternatively we could present the operand candidate sets
oldest_a and oldest_b to the application and let the user
decide.

In the following we will il lustrate the effect of uncer-
tainty on order dependent operators. As an example we use
the simple sequence operator A;B. We implement the evalu-
ate() method as follows:

evaluate: returns boolean {
// SEQUENCE-chronicle

Set<A> oldest_a; Set<B> oldest_b;
if (not_empty(POList<A> and not_empty(POList<B>))

oldest_a=POList<A>.oldest();
if (is_stable(oldest_a))

if (sizeof(oldest_a) > 1)
// exception (multiple a)

oldest_b = POList<B>.oldestFollowing(oldest_a);
if (is_stable(oldest_b))

if (sizeof(oldest_b) > 1)
// exception (multiple b)

else
compose(oldest_a, oldest_b)
return (TRUE); // A ; B

else
// expect sync-point to increase
return(FALSE);

else
// expect sync-point to increase
return(FALSE);

else
return(FALSE);

}

The method POList<>.oldestFollowing(Set<>)
returns the set of oldest events which are those events that
are following the oldest event in Set<> and are not preceded
by any other in the POList<>: 

Note that the above evaluate() algorithm presents the
most strict implementation of the sequence operator. In fact,

SignalEvent

InputNode C om positionN ode

evaluate

S ignalEvent
onD ata()

onD ata()

S ignalEvent

evaluate

Producers Consum ers

c leanUp

updateS yncPoints

updateS yncPoints

evaluate

c leanUp
b

1
0 b

2
0

T::e POList<E>.oldestFollowing(Set<F>) : ∈∀
fmin Set<F>∈  , lower fmin( ) minf Set<F>∈ lower f( )( )=

fmin e< fmin e⊥∨

e' POList<E>.oldestFollowing(Set<F>) : ∈ ts e'( )∃ ts e( )<( )¬



there could be pairs of events a ∈ oldest_a and b ∈ oldest_b
for which a<b holds. However, the notification service may
not silently decide upon which events to compose. We sug-
gest that the user may specify a callback to implement
application specific selection policies. On the other hand
we can say, that if we do not explicitly recognize such situ-
ations, then there is the possibilit y for erroneously signaling
a complex situation that actually did not occur.

VI. Conclusions and Future Work

Previous work on event composition in distributed
environments either does not consider the possibility of par-
tial event ordering or is based on the 2g-precedence model.
Therefore, existing approaches suffer from one or more of
the following drawbacks: lack of applicability to large scale
open systems, possibilit y of spurious events and ambiguous
event consumption.

In this paper we present a new approach for times-
tamping events in a large-scale, loosely coupled distributed
system. We use accuracy intervals with reliable error
bounds for timestamping of events reflecting the inherent
inaccuracy in time measurements. We leverage existing
time service implementations, like the Network Time Pro-
tocol, that provide reference time injected by GPS time
servers and additionally return reliable error bounds.  

We propose a window mechanism to deal with varying
transmission delays when composing events from different
event sources. Most important, when detecting composite
events we explicitly consider the fact that events can only
be partially ordered. We introduce an accuracy interval
order that guarantees the property of time consistent order:
events are not erroneously ordered and situations of uncer-
tain event order are always detected and signaled to the
application. Thereby, event consumption modes like recent
and chronicle can be unambiguously defined. In our ongo-
ing research we examine different strategies to handle
uncertainty of event order. Possible approaches could be to
provide policies as service configuration options or to intro-
duce up-calls to the application level to let the user decide
and make event composition programmable.

As many applications like CSCW need more powerful
temporal relations between composite events [48], we sug-
gest to think of composite events having a start and end-
point thus associating an interval with the composite event
instead of using the timestamp of the terminating event.
Then we can provide composition operators that allow for
interval relations [1].

Applications with demands for high accuracy time
stamping and timer signal handling, like real-time systems,
are supposed to make use of special low-cost hardware
equipment that directly integrates GPS time signals and
may achieve down to 1 µsec accuracy [21] and guarantees
precision of down to 2 µsec. The foundations of the pro-
posed interval based approach are in general applicable to
such a high accuracy and high precision time environment.
Our approach also fits well i nto mobile environments, pro-
vided that the mobile devices are equipped with GPS
receivers.

We have implemented a prototype on top of a CORBA
platform with multicast capabiliti es to experiment with
accuracy interval based event composition. Currently we
are incorporating event composition based on interval rela-
tions and are making extensions for up-call support.

VII. Acknowledgement

We wish to thank Jean Bacon and Ken Moody for
many fruitful discussions during their recent visit. Thanks
are also due to Ulf Meyer who implemented portions of the
first prototype.

VIII . References

[1] J.F. Allen. Maintaining Knowledge about Temporal Intervals. CACM,
Vol. 26, No. 11, November 1983.

[2] J. Bacon and K. Moody and J. Bates. Active Systems. Technical
Report. Computer Laboratory, University of Cambridge, December
1998. 

[3] F. Barabas and A. Poddany and J.-P. Florent and G. Klawitter. Java
Shared Objects for Flexible Distributed Applications - Prototype of a
Flight Data Management System. DIFODAM project, Eurocontrol,
Brussels, http://www.eurocontrol.fr/projects/difodam/.

[4] D. Barret and L. Clarke and P. Tarr and A. Wise. A Framework for
Event-based Software Integration, ACM Transactions on Software
Engineering and Methodology, Vol. 5, No. 4, 1996.

[5] J. Bates and J. Bacon and K. Moody and M. Spiteri. Using Events for
the Scalable Federation of Heterogeneous Components. In Proceed-
ings of the SIGOPS European Workshop on Support for Composing
Distributed Applications, September 1998.

[6] A. Buchmann and J. Zimmermann and J. Blakeley and D. Wells.
Building an Integrated Active OODBMS: Requirements, Architec-
ture, and Design Decisions. In Proceedings of ICDE '95, pp. 117-128,
March 1995.

[7] F. Casati and S. Ceri and B. Pernici and G. Pozzi. Deriving Active
Rules for Workflow Management. In Proceedings of DEXA'96, pp
94-115, September 1996.

[8] S. Chakravarthy and V. Krishnaprasad and E. Anwar and S. Kim.
Composite Events for Active Databases: Semantics, Contexts and
Detection. In Proceedings of the International Conference on Very
Large data Bases (VLDB '94), pp. 606-617, 1994.

[9] F. Cristian. Probabilistic Clock Synchronization. Distributed Comput-
ing (3), Springer, 1989.

[10] U. Dayal and A. Buchmann and D. McCarthy. Rules are Objects too:
a knowledge model for an active, object-oriented database system. In
Proceedings of the 2nd Intl. Workshop on Object-Oriented Database
Systems, Lecture Notes in Computer Science 334, Springer, 1988.

[11] U. Dayal et al. The HiPAC Project: Combining Active Databases and
Timing Constraints, ACM SIGMOD Record, Vol. 17, No. 1, pp. 51-
70, March 1988.

[12] U. Dayal and M. Hsu and R. Ladin. Organizing Long-Running Activ-
ities with Triggers and Transactions. In Proceedings of the 1990 ACM
SIGMOD International Conference on Management of Data (SIG-
MOD'90), pp. 204-214, May 1990.

[13] DCOM, Microsoft Corp., http://www.microsoft.com/com/dcom.asp/
[14] J. Eder and H. Groiss and H. Nekvasil. A Workflow System Based on

Active Databases. In Proceedings of Connectivity '94: Workflow
Management - Challenges - Paradigms and Products (CONN'94), pp.
249-265, 1994.

[15] C. Fetzer and F. Cristian. Integrating External and Internal Clock Syn-
chronization. Real-Time Systems, Vol. 12, No. 2., 1997, Kluwer Aca-
demic Publishers, Boston

[16] S. Gatziu and K. Dittrich. Events in an Active Object-Oriented Data-
base System. In Proceedings of Rules in Database Systems (RIDS
'93), pp. 23-39, August 1993.

[17] S. Gatziu and A. Koschel and G. v. Buetzingsloewen and H. Fritschi.



Unbundling Active Functionality, SIGMOD Record. Vol.27, No. 1,
pp. 35-40, March 1998.

[18] N. Gehani and H. Jagadish and O Shumeli. Event Specification in an
Active Object-Oriented database. In Proceedings of International
Conference on Management of Data (SIGMOD'92), June 1992.

[19] A. Geppert and D. Tombros. Event-based Distributed Workflow Exe-
cution with EVE. In Proceedings of Middleware '98 (IFIP Intl. Conf.
on Distributed Systems Platforms and Open Distributed Processing),
September 1998.

[20] R.E. Gruber and B. Krishnamurthy and E. Panagos.High-level Con-
structs in the READY Notification System. ACM SIGOPS European
Workshop on Support for Composing Distributed Applications, Sep-
tember 1998.

[21] W.A. Halang and M. Wannemacher. High Accuracy Concurrent Event
Processing in hard Real-Time Systems. Real-Time Systems, Vol. 12,
No. 1, 1997, Kluwer Academic Publishers, Boston.

[22] H. Jagadish and O. Shmueli. Composite Events in a Distributed
Object-Oriented Database. In M. Tamer Özsu, U. Dayal and P. Valdu-
riez (editors), Distributed Object Management, Morgan Kaufmann,
San Mateo, California, 1994.

[23] JavaBeans, Sun Microsystems, http://java.sun.com/beans/
[24] H. Kopetz. Sparse Time versus Dense Time in Distributed Real-Time

Systems. In Proceedings of the 12th Intl. Conf. on Distributed Com-
puting Systems (ICDCS), Yokohama, Japan, 1992.

[25] A. Koschel and R. Kramer et.al. Configurable Active Functionality for
CORBA. In 11th ECOOP'97 Workshop: CORBA Implementation,
Use and Evaluation, June 1997.

[26] L. Lamport and M. Melliar-Smith. Synchronizing Clocks in the Pres-
ence of Faults. Journal of the ACM, Vol. 32, No. 1, January 1985.

[27] L. Lamport. Time, clocks, and the ordering of events in a distributed
system. CACM Vol. 21 No. 7, pp. 558-565, July 1978.

[28] W. Lewandowski and J. Azoubub and W.J. Klepczynski. GPS: Pri-
mary Tool for Time Transfer. Proc. of the IEEE, Vol. 87, No. 1, Janu-
ary 1999.

[29] C. Liebig and B. Boesling and A. Buchmann. A Notification Service
for Next-Generation IT Systems in Air Traffic Control, GI-Workshop
"Multicast - Protokolle und Anwendungen", pp. 55-68, Braunsch-
weig, Germany, May 1999. 

[30] J. Lundelius and N. Lynch. An Upper and Lower Bound for Clock
Synchronization. Information and Control, Vol. 62, No. 2-3, 1984.

[31] C. Ma and J. Bacon. COBEA: A CORBA-Based Event Architecture.
In Proceedings of the USENIX Conference on Object-Oriented Tech-
nologies and Systems, pp. 117-131, June 1998.

[32] K. Marzullo and S. Owicki. Maintaining the Time in a Distributed
System. ACM Symp. on Principles of Distr. Computing 1983, in
ACM SIGOPS, 1985.

[33] D.L. Mills. Network Time Protocol Version 3. Network Working
Group Report RFC-1305, University of Delaware, March 1992.

[34] D.L. Mills. On the Accuracy and Stability of Clocks Synchronized by
the Network Time Protocol in the Internet System. ACM Computer
Communication Review, Vol. 20, No. 1, 1990.

[35] D.L. Mills. Unix Kernel Modifications for Precision Time Synchroni-
zation. Electrical Engineering Department Report 94-10-1, University
of Delaware, October 1994.

[36] Object Management Group (OMG), CORBA Services: Common
ObjectServices, Time Service. Technical Report formal/97-12-21,
ftp://www.omg.org/pub/docs/formal/97-12-21.pdf, Famingham, MA,
July, 1997.

[37] Object Management Group (OMG). Event Service Specification.
Technical Report formal/97-12-11, ftp://www.omg.org/pub/docs/for-
mal/97-12-11.pdf.

[38] Object Management Group (OMG). Notification Service Specifica-
tion. Technical Report telecom/98-06-15, ftp://www.omg.org/pub/
docs/telecom/98-06-15.pdf. 

[39] B. Oki and M. Pfluegl and A. Siegel and D. Skeen. The Information
Bus - An Architecture for Extensible Distributed Systems. In Proceed-
ings of SIGOPS 93, 1993.

[40] U. Schmid and K. Schossmaier. Interval-based Clock Synchroniza-
tion. Real-Time Systems, Vol. 12, No. 2., 1997, Kluwer Academic
Publi shers, Boston.

[41] R. Schwarz and F. Mattern. Detecting Causal Relationships in Distrib-

uted Computations: In Search of the Holy Grail . Distributed Comput-
ing, Vol. 7, No. 3, 1994.

[42] S. Schwiderski. Monitoring the Behavior of Distributed Systems, PhD
Thesis, Selwyn College, Computer Lab, University of Cambridge,
June 1996.

[43] T.K. Srikanth and S. Toueg. Optimal Clock Synchronization. Journal
of the ACM, Vol. 34, No. 3, July 1987.

[44] B. Sterzbach. GPS-based Clock Synchronization in a Mobile, Distrib-
uted Real-Time System. Real-Time Systems, Vol. 12, No. 1, 1997,
Kluwer Academic Publishers, Boston.

[45] D. Tombros and A. Geppert and K. Dittrich. Semantics of Reactive
Components in Event-Driven Workflow Execution, In Proceedings of
the 9th International Conference on Advanced Information Systems
Engineering, June 1997.

[46] P. Verissimo and L. Rodrigues and A. Casimiro. CesiumSpray: a Pre-
cise and Accurate Global Clock Service for large-scale Systems. Real-
Time Systems, Vol. 12, No. 3., 1997, Kluwer Academic Publishers,
Boston.

[47] P. Verissimo. Real-Time Communication. In Sape Mullender (Editor),
Distributed Systems, Addison-Wesley, 1993.

[48] T. Wahl and K. Rothermel. Representing Time in Multimedia-Sys-
tems. IEEE Conf. on Multimedia Computing Systems, Boston, 1994.

[49] S. Yang and S. Chakravarthy. Formal Semantics of Composite Events
for Distributed Environments. In Proceedings of the International
Conference on Data Engineering (ICDE 99), pp. 400-407, Sydney,
Asutralia, March 1999.

 


