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MULTICORE CHIP CAN ENABLE DETERMINISTIC REPLAY 
FOR CYCLIC DEBUGGING.

Hardware vendors are currently transitioning from single-
threaded microprocessors to chips that integrate multiple 
processor cores and threads in what is variously called 
multicore, chip multiprocessing, and chip multithreading.

At the same time, developing and maintaining reliable 
software continues to challenge software vendors. 
Effectively debugging the software is critical. Valuable to 
any debugger, deterministic replay enables a developer to 
re-execute the (buggy) program and zero in on bugs that 
faithfully re-appear. Moreover, deterministic replay can also 
be useful for fault detection/recovery, intrusion detection, 
and other applications.

To effectively use multicores, however, programmers must 
write and debug multithreaded applications. Unfortunately, 
neither the software or hardware environments of multicores 
provide deterministic replay. If nothing is done, software 
could be delivered later, with more bugs, or both. If users 
fail to see continued doubling of effective computer 
performance, vendor profits could be negatively affected.

To mitigate some of the gloom in this situation, we advocate 
augmenting multicores with modest hardware, called a 
Flight Data Recorder (FDR), that records sufficient 
information in a log to enable deterministic replay. Like an 
aircraft flight data recorder, FDR continually records 
information at low overhead during normal operation.

This paper provides a gentle introduction to how FDR 
solves the critical problem of recording memory races, 
while our previous work discusses all aspects, including 
providing algorithms and related work [9, 10, 8]. A race 
recorder must log sufficient information to order the 
outcomes of all conflicting memory accesses. Two accesses 
(reads or writes) conflict if they are from different threads, 
access the same memory block, and at least one of them is a 
write. In particular, FDR’s race recording:

• supports multicore designs using sequential consistency 
(SC) or total store order (TSO), which is x86-like;

• augments each core with a dynamic instruction counter
and a small local memory for logical timestamps (which 
are derived from instruction counts);

• piggybacks timestamps on some coherence messages; 
and

• exploits transitivity to log about one byte per thousand 
instructions executed.

Memory Race Recording Context
Before we develop FDR, we summarize the context in 
which it operates. We assume a recorder and a replayer.

The recorder logs information during multithreaded 
program execution that is sufficient to enable deterministic 
replay. Ideally, it should allow program to run at (nearly) 
full speed so the recorder can be “always on” for post-
mortem analysis of bugs in the field (like aircraft flight data 
recorders).

The recorder must solve three sub-problems. First, it must 
record initial state. This is trivially done if recording begins 
as a program starts execution. Otherwise, the problem 
reduces to taking a checkpoint. Checkpointing is a well-
studied problem with many old (e.g., copy-on-write pages) 
and new solutions (logging selected read values [5]). With 
sufficiently long replay intervals, even high checkpoint 
overhead will only minimally affect performance.

Second, a recorder must log inputs from outside the system 
being recorded, which is also a well-studied problem. An 
input may include both a value and a timestamp. Input 
values include program reads of devices (I/O space), values 
copied into memory by devices with direct memory access 
(DMA), and values that affect (e.g., vector) interrupts. Input 
timestamps record the I/O “timing” (e.g., the dynamic 
instruction count when a processor services an interrupt).

Third, the recorder must log the outcome of all memory 
races, which is the subject of this paper.

After recording, the replayer uses the logged information, 
together with the program binary, to faithfully replay the 
original execution. The replay will always exercise the same 
bug(s) and produce the same output(s). In many cases, 
replayer execution time is less critical, because it is used 
only when bugs are discovered, which is (hopefully) a small 
fraction of all executions. Thus, it may be sufficient to do 
replay with a software simulator. We have only developed a 
simple replayer for testing recorders.

Memory race recording holds the key for future recorders 
for multithreaded programs on multicore systems. At 
VMworld 2006, Mendel Rosenblum demonstrated a record-
replay prototype where a colleague painted a picture with 
Microsoft Paint and replay re-painted it. They received a 
rousing ovation. In the future, we would like to do such a 
demonstration with a multithreaded program. In our 
judgement (prior to Xu joining VMware), doing so will 
require hardware memory race recording. This is because 
existing software race recorders slow down program 
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execution tremendously [3, 6], or have hard-to-meet 
requirements (i.e,. (buggy) programs never have data races 
and/or programs always run on a uniprocessor system).

FDR Hardware Memory Race Recorder

Figure 1: A base multicore (unshaded) supplemented with FDR memory race recording hardware (shaded)

This section develops the FDR memory race recorder for 
multiprocessors that implement SC or TSO. The basic idea 
has two components. First, we have each core assign a count 
(timestamp) to the instructions it executes and remember 
(an approximation of) the timestamp when it last accessed 
each memory block. When core C2 seeks to access a block 
accessed by core C1, core C1’s coherence response includes 
the core C1’s timestamp for the block, so that core C2 can 
log an entry ordering its conflicting access after the core 
C1’s access. Optimizations enable FDR to elide logging on 
most coherence responses and to store few timestamps.

To be concrete, we assume the base multicore design 
depicted in Figure 1 (unshaded). Our system includes 
DRAM and I/O bridges attached to a single multicore chip. 
The multicore includes a two or more single-threaded 
processor cores, private writeback L1 instruction and data 
caches, a shared banked L2 cache, and a point-to-point 
interconnect. Caches are kept coherent with a MOSI 
directory protocol (e.g., directory entries at L2 cache banks) 
where L1 caches do not notify the directory on shared 
replacements. Later we touch upon issues relaxing these 
concrete assumptions.

We now discuss FDR’s added hardware (shaded in Figure 1) 
and operation.

Added Hardware. FDR makes a few hardware changes.
First, FDR adds a local dynamic instruction counter (IC) to 
each core that assigns a logical timestamp to each 
instruction that the core commits. 

Second, each core includes a timestamp memory (TSM) of 
modest size (e.g., our evaluation uses a 24KB TSM). For 
each memory block, a TSM can provide a timestamp greater 
than or equal to when the local core last accessed the block. 
A TSM caches the timestamps of recently-accessed 
memory blocks. It evicts older timestamps to accommodate 
the newer ones. The TSM can safely approximate the 
timestamp for block B not found in the TSM with the oldest 
timestamp in block B’s set. TSM’s must use true least-
recent-used (LRU) eviction, but may use any associativity.

Third, coherence protocol response messages (e.g., data and 
invalidation acknowledgements) include a piggybacked 
timestamp: a message payload not interpreted by the 
coherence protocol. This timestamp may be logged at the 
receiving core to order conflicting accesses. 

Fourth, not shown, each core includes logging hardware to 
record selected timestamps and core identifiers. A simple 
implementation writes the log to the L2 cache for physical 
(or virtual) memory reserved for each core.

Fifth, optional TSO support, discussed later, requires that 
each core includes simple, local logic to detect when a read 
might violate SC to enable the value read to also be logged.
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Race Recording Operation. Consider

Figure 2: (a) a multithreaded execution and (b) FDR recording a shared memory race

 the example 
provided in Figure 2 where part (a) depicts the code of two 
threads, i and j, and part (b) the sequence of FDR actions for 
block B only. Assume threads i and j run on cores C1 and 
C2, respectively. After thread i finishes its instruction 2
(i:2), block B is cached at core C1 as modified (M) and is 
invalid (I) at core C2. 
1)As C1 writes memory block B, C1 records its current IC 

of 2 in its TSM as block B’s timestamp.
2)When C2 seeks to write block B at IC 3, an L1 miss 

occurs.
3)C2 sends an exclusive coherence request (GETX) to the 

L2 directory.
4)The directory forwards the request to C1.
5)C1 looks up block B’s timestamp of 2 from its TSM and 

responds to C2 with the data block B and a piggybacked 
timestamp.

6)Finally (not shown) C2 writes a “i:2 is before j:3” record 
into j’s log and completes its instruction 3, writing block 
B.

Later, a replayer can use this “i:2 is before j:3” record in j’s 
log to replay the race for block B in the same order. A replay 
(simulation) of thread j, for example, reads the log entry, 
executes thread j’s instructions to j:2 (just before j:3), waits 
for thread i to execute past i:2, and then executes j:3 and 
subsequent thread j instructions until stalling at thread j’s 
next log entry. 

As discussed later, FDR will not need to record the dashed 
arc for block A from i:1 to j:4. The replayer can infer this 
arc, because it knows that i:1 is before i:2 (i’s program 
order), i:2 is before j:3 (logged), j:3 is before j:4 (j’s 
program order), and the relation “is before” is transitive (“x 
is before y” and “y is before z” implies “x is before z”).

Similar reasoning allows FDR’s TSMs to be caches that 
don’t explicitly store timestamps for all memory blocks. For 

example, let thread i access block B at IC 1000 and execute 
for sufficiently long that i’s TSM evicts B. Much later, if
thread j accesses block B at ICj, then j’s may log “i:2000 is 
before j:ICj”, where 2000 is provided by i’s TSM. This log 
entry is sufficient, because i:1000 is before i:2000 (i’s 
program order) and i:2000 is before j:ICj (logged) imply 
i:1000 is before j:ICj by transitivity.

FDR also assumes that is not acceptable to store timestamps 
in the shared L2 cache or to change the DRAM memory. It 
recovers missing timestamps with modest coherence 
protocol changes. After an L1 writeback of block B by C2, 
for example, the L2 directory entry for block B continues to 
remember C2. On a subsequent request for block by C1, the 
coherence protocol is modified to ask C2 to query its TSM 
for block B’s timestamp (or larger approximation).

Why FDR’s Race Recording Works
Here we sketch two alternative arguments why FDR’s 
memory race recording is correct, but interested readers can 
find more detailed arguments in our prior work.

The first argument is that FDR’s memory race recording 
works, because it records “the order” of coherence 
operations to enable the replayer to replay them in the same 
order. The same coherence order yields the same execution.

This argument was literally true for the recorder of Bacon 
and Goldstein [1]. They assumed a snooping system and 
recorded the total order of bus activity. FDR, on the other 
hand, only records a partial order of coherence activity. The 
order of conflicting accesses is recorded, but non-conflicting 
accesses may not be. While it seems intuitive that 
deterministic replay can be enabled without ordering non-
conflicting accesses, proving it requires more formalism.

The second, more formal argument, due to Netzer [6], uses 
sequential consistency (SC) and a notion of equivalent SC 
executions. SC semantics require that the memory accesses 
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of all cores appear to be interleaved into a single total order. 
Two SC executions are equivalent if every read obtains the 
same value and the final memory state is the same. Netzer 
showed that recording the conflicting accesses of an SC 
execution, as FDR does, is sufficient to enable a replay of an 
equivalent SC execution.

How FDR Reduces Log Size Growth
FDR would not be viable if it created log entries on every 
interaction among cores, because doing so would require 
considerable write bandwidth and generate large logs. Log 
size can eventually limit how long race recording can 
operate. For fixed log size, dividing log growth rate by a 
factor R, multiplies recording length by the same factor R. 

FDR actually optimizes log growth two ways. First, FDR 
simplifies Netzer’s transitive reduction (TR) optimization 
[6] for hardware implementation [9]. We saw an example of 
TR in action when we discussed Figure 2. TR freed FDR 
from recording the dashed arc on block A, because it was 
implied by transitivity via program order and the recorded 
arc for block B.

Overall, TR is very effective, reducing log size growth by 
factors of 10 to 1000. This is because threads often run 
independently for many instructions and, when they do 
interact, often use a single synchronization variable to 
coordinate multiple data accesses. Let one thread access 
data blocks D1, D2, and D3 and then release lock L, while 
another thread waits for L to be freed, acquires it, and then 
accesses D1, D2, and D3. With TR, FDR will only log an 
entry for the block containing L, even though FDR is 
ignorant of program semantics (e.g., where locks are or 
what they mean).

Hardware for implementing TR is local and simple. Each 
core Cj records a table of the largest timestamp it received 
from each other core Ci. Core Cj does not log an entry from 
core Ci with ICi if the timestamp it has stored for core Ci is 
greater or equal to the newly-received ICi.

FDR improves on Netzer’s original TR by (a) using TSMs 
to approximate missing timestamps, (b) tracking scalar, not 
vector, timestamps, and (c) providing a hardware 
implementation.

Second, FDR also uses an optional regulated transitive 
reduction (RTR) optimization to further reduce log size 
(e.g., 30%) [10, 8]. RTR often records stricter dependences 
than necessary for replay to (a) allow more log entries to be 
removed by TR and (b) compact entries with a process 
somewhat analogous to vectorization. Interested readers 
should consult the original work.

An Extension to Support SC and TSO
Previous race recorders, implemented in hardware or 
software, have required SC, making them inapplicable to 
most deployed hardware. We now extend FDR to support 
both SC and SPARC’s total store order (TSO). We focus on 

TSO, because it is well-defined and rumored to be 
implemented by many x86 systems as a valid 
implementation of processor consistency (PC). Our goal is 
to record TSO executions without forcing the executions to 
conform to SC, while, at most modestly increasing log size 
and hardware complexity. Readers uninterested in TSO may 
skip this section without loss of continuity.

TSO creates challenges for race recording. TSO relaxes 
write-to-read ordering to the shared memory. Informally,
with TSO, a core can implement a hardware first-in-first-out 
(FIFO) write buffer. 

Figure 3: An example of TSO executions that are not SC, 
because writes are delayed by the write buffer (The 
numbers in /* */ denote the memory ordering.)

i j
A = 1 /* 3 */1

%r1 = B /* 1 */2

B = 1 /* 4 */1

%r2 = A /* 2 */2

initially: A = 0, B = 0

Figure 3 shows an example TSO 
execution that is not allowed by SC. In this execution, 
thread i first writes memory location A then reads a different 
memory location B, thread j first writes B then reads A. 
Because of the write buffers, the two reads are ordered 
before the writes are ordered. The numbers in “/* */”
denote the memory ordering. For this execution, a race 
recorder that assumes SC would log two interthread arcs 
“i:2 is before j:1” and “j:2 is before i:1”. During the replay, 
if the replayer follows the SC order, the recorded 
dependence cycle causes it to deadlock (cycle of 
dependencies).

We propose an order-value-hybrid recorder to handle SC 
and TSO executions [8]. Our key observation is that some 
reads cause replay deadlocks, because they are ordered (at 
memory) before writes that are earlier in program order. 
FDR’s order-value-hybrid race recording detects and reacts 
to such problematic reads.

• It detects read R at ICn as problematic if it obtains a value 
V from the cache, while one or more earlier writes W0, ..., 
Wn-1 (IC’s < ICn) are still in the write buffer and the 
cache block containing V is invalidated before all of the 
writes W0, ..., Wn-1 exit the write buffer.

• It reacts to a problematic read R by logging its instruction 
count ICn and value read V.

This information later allows a replayer to, in effect, replay 
problematic reads by value, rather than by ordering.

Our problematic read detect logic is similar to that used in 
aggressive implementations of SC [2], but our reaction logs 
a tuple (and does not trigger a mis-speculation recovery to 
obtain SC compliance). Nevertheless, this logging (at most) 
4



 

slightly increases the log size, because reads that can 
potentially violate SC are known to occur infrequently.

FDR Memory Race Recording Methods & Results
Evaluation Methods. Here we summarize the methods we 
use to evaluate FDR’s memory race recording. We use full-
system simulation via Wisconsin GEMS [7] with Simics. 

We model a SPARC multicore system in sufficient detail to 
run the unmodified Solaris 9 operating system. The target 
system has one multicore chip with four cores, a 15-cycle 
shared 16MB L2 cache, and 80ns off-chip DRAM. Each 
core is 1 GHz two-way-issue in-order with single-cycle split 
I&D 64KB L1 caches. Each core’s TSM is 24KB to hold 
2048 timestamps.

We exercise the system with four commercial workloads. 
Apache is a static web serving workload. Online 
Transaction Processing (OLTP) models database activities 
of a wholesale supplier, with many concurrent users 
performing transactions. JBB is a server-side java 
benchmark that models a 3-tier system, focusing on the 
middle-ware server business logic. Zeus is another static 
web serving workload.

Results. Figure 4 displays three key results. Part (a) shows 
that FDR’s memory race log grows about one byte per 
thousand instructions executed. This allows FDR to record 
memory races for billions of instructions with megabytes of 
log storage. Part (b) reveals that FDR’s memory race 
recording has negligible runtime overhead (less than 2%), 
while part (c) shows that it adds tolerable interconnect 
bandwidth overhead (about 10%). 
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Figure 4: FDR’s (a) log size growth rate, (b) runtime overhead, and (c) interconnect bandwidth overhead
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In our judgement, these results support that FDR offers a 
practical option for recording races in future multicore 
systems.

Future Extensions
Our description of FDR race recording made many base 
system assumptions, such as single multicore system, 
single-threaded cores, directory coherence, writeback 
caches, and SC or TSO memory consistency. These 
assumptions can be relaxed in future work with varying 
degrees of effort. 

Some extensions appear straightforward. Supporting 
systems with more than one multicore chip is trivial, 
depending the coherence protocols. Handling multithreaded 
cores (e.g., hyper-threading) can be done by augmenting 
now-shared L1 caches with state bits to trigger pseudo-
coherence logging events when different threads of the same 
core interact (but better solutions may exist).

FDR currently recovers timestamps of evicted blocks with 
modest coherence protocol changes. Alternatively, it might 
be better to leave the protocol unchanged by storing at an L2 
cache bank the timestamps for when each core last wrote-
back a block.

Other extensions require more creativity. Race recorders for 
systems with snooping, rather than directory coherence, 
may require other methods of reducing race logs, such as 
storing selected written-back timestamps, as above, or 
dividing memory accesses into temporal strata [4]. 
Moreover, while handling write-through caches to a private 
writeback cache appears easy, recording a system with 
write-through to a single shared cache may require more 
coherence protocol changes.

Finally, there is at least one extension without a known 
efficient solution: race recording with memory consistency 
models more relaxed than TSO. Xu [8] provides insight 
why our order-value hybrid does not directly apply.
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Conclusions
Deterministic replay of multithreaded execution enables 
cyclic debugging on multicores. A key challenge is 
recording the original execution memory races without 
slowing down the execution significantly. To a multicore 
supporting SC or TSO, we propose adding modest “flight 
data recorder” (FDR) hardware that piggybacks timestamps 
on coherence messages to write optimized record on 
memory races using about one byte per thousand 
instructions executed.

While FDR requires hardware changes, perhaps the time 
has come to spend modest chip resources to ease debugging 
of the multithreaded software that we will all depend upon.
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