
Selective Capture and Replay of Program Executions

Alessandro Orso and Bryan Kennedy
College of Computing

Georgia Institute of Technology

orso@cc.gatech.edu, bck@acm.org

ABSTRACT
In this paper, we present a technique for selective capture and re-
play of program executions. Given an application, the technique
allows for (1) selecting a subsystem of interest, (2) capturing at
runtime all the interactions between such subsystem and the rest
of the application, and (3) replaying the recorded interactions on
the subsystem in isolation. The technique can be used in several
scenarios. For example, it can be used to generate test cases from
users’ executions, by capturing and collecting partial executions in
the field. For another example, it can be used to perform expensive
dynamic analyses off-line. For yet another example, it can be used
to extract subsystem or unit tests from system tests. Our technique
is designed to be efficient, in that we only capture information that
is relevant to the considered execution. To this end, we disregard
all data that, although flowing through the boundary of the subsys-
tem of interest, do not affect the execution. In the paper, we also
present a preliminary evaluation of the technique performed using
SCARPE, a prototype tool that implements our approach.

1. INTRODUCTION
The initial motivation for this work stems from results that we

obtained while experimenting with a technique that leverages field
data to perform impact analysis and regression testing [5]. These
results clearly showed that, for the cases considered, executions in
the field manifest a quite different behavior than in-house execu-
tions. Therefore, we wanted to leverage such differences to im-
prove in-house testing. Ideally, we wanted to be able to capture
executions in the field and then replay them in-house.

More generally, the possibility of capturing and replaying pro-
gram executions can be useful for many software-engineering tasks.
In testing, for instance, the ability to capture and replay executions
would allow for automatically getting test cases from users. Given
a deployed program, we could capture executions in the field, col-
lect and group them into test suites, and then use such test suites
for validating the program in the way it is used. Capture and replay
would also allow for performing dynamic analyses that impose a
high overhead on the execution time. In this case, we could cap-
ture executions of the uninstrumented program and then perform
the expensive analyses off-line, while replaying.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Workshop on Dynamic Analysis (WODA 2005)17 May 2005, St. Louis,
MO, USA
Copyright 2005 ACM ISBN # 1-59593-126-0 ...$5.00.

Unfortunately, capturing complete executions is generally infea-
sible, for several reasons. First, there are practicality issues. To cap-
ture a complete execution, we may need to record a large volume of
data—all the inputs to the application. Also, capturing the inputs
provided to an application can be difficult and may require cus-
tom mechanisms, depending on the way the application interacts
with its environment. Second, there are privacy issues. The data
captured could contain confidential information that users may not
want to be collected. Third, there are issues related to side effects.
If a captured execution has side effects on the system on which it
runs, replaying it may corrupt the system. Furthermore, the envi-
ronment may have changed between capture and replay time.

To address these problems, while still being able to reproduce
executions, we defined a novel technique based onselective cap-
ture and replay of executions. Given an application, the technique
lets us (1) select a subsystem of interest, (2) capture at runtime all
the interactions between such subsystem and the rest of the appli-
cation, and (3) replay the recorded interactions on the subsystem in
isolation. Our technique is designed to be efficient: for each execu-
tion, we only capture information that is relevant to that execution.
To this end, we disregard all data that, although flowing through the
boundary of the subsystem of interest, do not affect its execution.
Intuitively, our technique captures only the minimal subset of the
application’s state and environment required to replay the execution
considered on the selected subsystem.

Our technique allows for addressing the issues of practicality,
privacy, and safety listed above. When practicality is concerned,
we can limit the volume of data that we need to record by suitably
selecting the subset of the application for which we capture infor-
mation. Also, we address the problems represented by complex
execution environments because we always capture (and replay) at
the boundary between parts of the application. When privacy is
concerned, we can exclude from the subsystem of interest those
parts of the application that handle confidential information. When
this is not possible, we envision a use of our technique in which
also the replay is performed on the users’ machines. For exam-
ple, if the technique is used to perform expensive dynamic analy-
ses on part of the application, we could capture executions for that
part while users are running the application, replay them on an in-
strumented version when free cycles are available, and collect only
sanitized results of the analysis. When safety is concerned, our
technique eliminates all side effects because it replays the subsys-
tem in a sandbox—all interactions with the rest of the application
and with the environment are only simulated during replay.

An additional advantage of our technique is that, by performing
capture and replay at the subsystem level, it enables additional ap-
plications that would not be possible for a technique that captures
complete executions. In particular, our technique can be used to

A p p l i c a t i o n
D a t a b a s e F i l eS y s t e m

A p p l i c a t i o nS u b s e t
c l a s s D B { . . . }c l a s s N o d e { . . . }c l a s s C o m p u t e {i n t n o r m = 0 ;D B d b ;. . .v o i d s e t u p (i n t x) {. . .i n t y = d b . g e t S o m e I n t () ;n o r m = x 3 y ;. . .} . . .d o u b l e g e t R a t i o (H u g e T r e e h t) {I t e r a t o r i t = h t . i t e r a t o r () ;w h i l e (i t . h a s N e x t ()) {N o d e n = (N o d e) i t . n e x t () ;d o u b l e r e s = n . v a l ;i f (r e s > 0)r e t u r n r e s / n o r m ;} r e t u r n 0 . 0 ;}}

U s e r s N e t

Figure 1: Example application.

automatically generate subsystem and unit test cases from system
test cases (or from complete executions in general). Because of
the way we capture and replay, such test cases would include all
needed stubs, drivers, and even oracles, and could benefit testing
activities such as regression testing.

In this paper, we present our technique for selective capture and
replay. We also present a prototype tool, called SCARPE, that im-
plements our technique for Java programs, and a study that shows
the feasibility of the approach. Finally, we discuss several direction
for future research.

2. SELECTIVE CAPTURE AND REPLAY

2.1 Overview
Before presenting our technique for selective capture and replay,

we provide an example that we use in the rest of the discussion to
motivate and illustrate the technique. Figure 1 shows a networked,
multi-user application that receives inputs from users and performs
read and write accesses to both a database and the filesystem. The
example is representative of situations in which capturing all the
information required to replay the entire application would involve
technical challenges (e.g., collecting the data that flow from the
users to the application and vice versa), storage problems (e.g., we
may have to record consistent portions of the database), and privacy
issues (e.g., the information provided by the users may be confiden-
tial). We use this kind of application as an example because it lets
us stress that many systems are complex and operate in a varied and
complicated environment. However, the above issues would arise,
to different extents, for most applications (e.g., mail clients, word
processors, web servers).

Our technique allows for overcoming these issues by providing
a flexible and efficient way to capture and replay executions. More
precisely, our technique has three main characteristics.

First , it captures and replays executionsselectively. Users can
specify the subset of the application that they are interested in cap-
turing and replaying, and the technique only captures execution
data for such subsystem. For example, considering Figure 1, we
could specify that we are interested in capturing only the parts of
the execution that involve the highlightedapplication subset.

Second, our technique captures and replays executions in terms
of events. During capture, the technique records every relevant in-
teraction between the selected application subset and the rest of
the system as an event with a set of attributes. During replay, the

R e p l a y S c a f f o l d i n g
U n o b s e r v e dS e t O b s e r v e dS e tL i b r a r i e s

C a p t u r e :I n p u t O u t p u tE v e n tL o g
O b s e r v e dS e tR e p l a y :E v e n tL o g

Figure 2: Overview of the technique.

technique reads the recorded set of events and replays the corre-
sponding interactions.

Third , when recording events, our technique does not capture all
the information that traverses the boundary between the selected
application subset and the rest of the system. Instead, it captures
only partial dataand disregards the rest, which is of fundamental
importance for the practicality of the technique.

2.2 The Technique
Because the characteristics of the programming language tar-

geted by the technique considerably affect its definition, we define
our technique for a specific language: Java.1 Although Java is our
reference language, the technique should be generally applicable
or adaptable to any object-oriented language that has the same fea-
tures of Java or a subset thereof.

In the rest of the paper, we use the following terminology. We
refer to the selected application subsystem as theobserved setand
to the classes in the observed set as theobserved classes(or code).
Observed methodsand observed fieldsare methods and fields of
observed classes. We define in an analogous way the termsunob-
served set, unobserved classes, unobserved code, unobserved meth-
ods, andunobserved fields. The termexternal codeindicates unob-
served and library code together. The termunmodifiable classes
denotes classes whose code cannot be modified (e.g., some system
classes, such asjava.lang.Class, or classes containing native
methods), and the termmodifiable classesrefers to all other classes.

Our technique is divided in two main phases: capture and replay.
Figure 2 informally depicts the two phases.

The capture phase takes place while the application is running
(e.g., in the field or during testing). Before the application starts,
based on the user-provided list of observed classes, the technique
identifies the boundaries of the observed set and suitably modifies
the application to be able to capture interactions between the ob-
served set and the rest of the system. The application is modified
by inserting probes (i.e., instructions added to the code through in-
strumentation) into the code. When the modified application runs,
the probes in the code suitably generate events for the interactions
between the observed classes and the external code. The events,
together with their attributes, are recorded in anevent log.

In the replay phase, the technique automatically provides are-
play scaffolding. The replay scaffolding inputs the event log pro-
duced during capture and replays each event in the log by acting as

1We refer to Java before the introduction of generic classes.

both a driver and a stub. Replaying an event corresponds to either
performing an action on the observed set (e.g., writing an observed
field) or consuming an action from the observed set (e.g., receiving
a method invocation originally targeted to external code). Based
on the event log, the replay scaffolding is able to generate and con-
sume appropriate actions, so that during replay the right classes are
created and the interactions among these classes are reproduced.
We now discuss the two phases in detail.

2.3 Capture Phase
As stated above, the capture phase works by (1) identifying all

the interactions between observed and external code, (2) suitably
instrumenting the application code, and (3) efficiently capturing in-
teractions at runtime.

Before discussing the details of this phase, we need to introduce
the concept of object ID. In the context of our technique, anobject
ID is a positive numeric ID that uniquely identifies a class instance.
To generate such IDs, our technique uses a numericglobal ID that
is initialized to zero when capture starts. For modifiable classes,
the object ID is generated by adding a numeric field to the classes
and by adding a probe to the classes’ constructors. The probe in-
crements the global ID and stores the resulting value in the numeric
field of the object being created. Therefore, given an instance of a
modifiable class, the technique can retrieve its object ID by simply
accessing the ID field in the instance. For unmodifiable classes,
we associate IDs to instances using areference map. The reference
map contains information about how to map an object to its ID and
is populated incrementally. Every time the technique needs an ob-
ject ID for an instance of an unmodifiable class, it checks whether
there is an entry in the reference map for that instance. If so, the
technique gets from the map the corresponding ID. Otherwise, it
increments the global ID and creates a new entry in the map for
that instance with the current value of the global ID.

In the rest of the section, we first discuss how our technique
can efficiently capture interactions by minimizing the amount of
information to be recorded. Then, we discuss the different kinds of
interactions identified by our technique, the corresponding events
captured, and the approach used to capture them.

2.3.1 Capturing Partial Information
A major issue, when capturing data flowing through the bound-

ary of a subsystem (e.g., values assigned to a field) is that the
types of such data range from simple scalar values to complex
and composite objects. Whereas capturing scalar values can be
done inexpensively, collecting object values is computationally and
space expensive. A straightforward approach that captures all val-
ues through the system (e.g., by serializing objects passed as pa-
rameters) would incur in a tremendous overhead and would render
the approach impractical. (In preliminary work, we measured time
overhead of over 500% for a technique based on object serializa-
tion.) Our key intuition to address this problem is that (1) we only
need to capture the subsets of those objects that affect the compu-
tation, and (2) we can conservatively approximate such subset by
capturing it incrementally and on demand.

Consider again methodgetRatio in Figure 1 and assume that,
for a given call, the first node whose value is greater than zero is the
fifth node returned by the iterator. For that call, even ifht contains
millions of nodes, we only need to store the five nodes accessed
within the loop. We can push this approach even further: in gen-
eral, we do not need to capture objects at all. Ultimately, what af-
fects the computation are the scalar values stored in those objects or
returned by methods of those objects. Therefore, as long as we can
automatically identify and intercept accesses to those values, we

can disregard the objects’ state. For instance, in the example con-
sidered, the only data we need to store to replay the considered call
are the boolean values returned by the calls to the iterator’s method
hasNext, which determine the value of thewhile predicate, and
thedouble values associated with the five nodes accessed.

Although it is in general not possible to identify in advance which
subset of the information being passed to a method is relevant for a
given call, we can conservatively approximate such subset by col-
lecting it incrementally. To this end, we leverage our object-ID
mechanism to record only minimal information about the objects
involved in the computation. When logging data that cross the
boundaries of the observed set (e.g., parameters and exceptions),
we record the actual value of the data only for scalar values. For
objects, we only record their object ID and type. (We need to
record the type to be able to recreate the object during replay, as
explained in Section 2.4.) With this approach, object IDs, types,
and scalar values are the only information required to replay execu-
tions, which can dramatically reduce the cost of the capture phase.

2.3.2 Interactions Observed–External Code

Method Calls.The most common way for two parts of an ap-
plication to interact is through method calls. In our case, we must
account for both calls from the unobserved to the observed code
(incalls) and calls from the observed to the unobserved code (out-
calls). Note that the technique does not need to record calls among
observed methods because such calls occur naturally during replay.

Our technique records four kinds of events related to method
calls: (1)OUTCALLevents, for calls from observed to unobserved
code; (2)INCALL events, for calls from unobserved to observed
code; (3)OUTCALLRETevents, for returns from outcalls; and (4)
INCALLRETevents, for returns from incalls. OUTCALL and IN-
CALL events have the following attributes:

Receiver: Fully qualified type and object ID of the receiver ob-
ject. For static calls, the object ID is set to−1.

Method called: Signature of the method being called.
Parameters: A list of elements, one for each parameter. For

scalar parameters, the list contains the actual value of the parame-
ters, whereas for object parameters, the list contains the type of the
parameter and the corresponding object ID (or a zero value, if the
parameter isnull).

OUTCALLRET and INCALLRET events contain only one at-
tribute: the value returned. Analogous to call parameters, the at-
tribute is the actual value in the case of scalar values, whereas it
consists of the type of the value and the corresponding object ID if
an object is returned.

To capture OUTCALL events, our technique modifies each ob-
served method by adding a probe before each call to an external
method. The signature of the method called is known statically,
whereas the receiver’s type and object ID and the information about
the parameters is generally gathered at runtime.

To capture INCALL and INCALLRET events, our technique
performs two steps.First , it replaces each public observed method
m with a proxy method and an actual method. Theactual method
has the same body asm (modulo some instrumentation), but has a
different signature that takes an additional parameter of a special
type. Theproxy method, conversely, has exactly the same signature
asm, but a different implementation. The proxy method (1) creates
and logs an appropriateINCALL event, (2) calls the actual method
by specifying the same parameters it received plus the parameter of
the special type, (3) collects the value returned by the actual method
(if any) and logs an INCALLRET event, and (4) returns to its caller
the collected value (if any). In this case, all the information needed
to log the events, except for the object ID and the return value, can

be computed statically.Second, the technique modifies all calls
from observed methods to public observed methods by adding the
additional parameter of the special type mentioned above. In this
way, we are guaranteed that calls that do not cross the boundaries
of the observed code invoke the actual (and not the proxy) method
and do not log any spurious INCALL or INCALLRET event (these
calls and returns occur naturally during replay).

Finally, to capture OUTCALLRET events, our technique again
modifies the observed methods by instrumenting each call to an
external method. For each such call, the technique adds a probe
that stores the value returned by the call (if any) and logs it.

Access to Fields.Interactions between different parts of an ap-
plication also occur through accesses to fields. To account for these
interactions, our technique records accesses to observed fields from
unobserved code and accesses from observed code to unobserved
fields and fields of library classes. In the case of accesses from un-
observed code to observed fields, we only record write accesses—
read accesses do not affect the behavior of the observed classes and,
thus, do not provide any useful information for replay. Further, un-
like events generated in the observed code (e.g., OUTWRITE and
OUTCALL events), read accesses cannot be used as oracles be-
cause they are generated by code that is not going to be executed at
all during replay.

Our technique records three kinds of events for accesses to fields:
(1) OUTREADevents, for read accesses from observed code to
unobserved or library fields; (2)OUTWRITEevents, for write ac-
cesses from observed code to unobserved or library fields; and (3)
INWRITEevents, for modifications to an observed field performed
by external code. OUTREAD, OUTWRITE, and INWRITE events
have the following attributes:

Receiver:Fully qualified type and object ID of the object whose
field is being read or modified. As before, value−1 is used in the
case of access to a static field.

Field Name: Name of the field being accessed.
Value: Value being either read from or assigned to the field.

Also in this case, the value corresponds to the actual values for
scalar fields and to an object ID or zero (fornull) otherwise.

To capture OUTREAD and OUTWRITE events, the technique
first analyzes the observed code and identifies all the accesses to
fields of external classes. Then, the technique adds a probe to each
identified access: if the access is a read access, the probe logs an
OUTREAD event with the value being read; if the access is a write
access, the probe logs an OUTWRITE event with the value being
written. The information about the field name is computed stati-
cally and added to the probes, whereas the information about the
type and object ID is computed dynamically.

The method to capture INWRITE events is analogous to the one
we just described for OUTWRITE events. The only difference is
that the technique analyzes the modifiable external classes, instead
of the observed ones, and instruments accesses to observed fields.

Exceptions.Exceptions too can cause interactions between dif-
ferent parts of an application. Moreover, interactions due to ex-
ceptions occur through implicit changes in the applications’ con-
trol flow and are typically harder to identify than other types of
interactions. For example, for the code in Figure 1, if the call to
ht.iterator() in methodgetRatio terminated with an excep-
tion, the rest of the code in the method would not be executed. Not
reproducing the exception during replay would result in a complete
execution of the method, which does not correctly reproduce the
recorded behavior. However, there is no point ingetRatio’s code
in which the fact that an exception has occurred is explicit.

To capture interactions that occur due to exceptions, our tech-
nique records two types of events: (1)EXCIN, for exceptions that
propagate from external to observed code; and (2)EXCOUT, for
exceptions that propagate from observed to external code. EXCIN
and EXCOUT events have only one attribute that consists of the
type and object ID of the corresponding exception.

To collect EXCOUT events, our technique wraps each observed
methodmwith an exception handler that includes the entire method’s
body and handles exceptions of any type. (In Java, this instrumenta-
tion is realized by adding atry-catch block that includes the en-
tire method and catches exceptions of typejava.lang.Throwable.)
The handler’s code checks, by inspecting the call stack, whether
m’s caller is an external method. If so, it records the type and object
ID of the exception, logs the corresponding EXCOUT event, and
re-throws the exception. Conversely, ifm’s caller is an observed
method, the exception is still re-thrown, but is not logged as an
EXCOUT event because it does not propagate to external code.

Similarly, to collect EXCIN events, our technique instruments all
call sites in observed methods that call external methods. The tech-
nique wraps each such call site with an exception handler that also
handles exception of any type. In this case, the handler’s code gath-
ers the type and object ID of the exception, logs the corresponding
EXCIN event, and re-throws the exception.

Note that a single exception could result in multiple EXCIN and
EXCOUT events, in the case in which it traverses the boundary
between the observed and the external code multiple times.

2.4 Replay Phase
In the replay phase, our technique first performs two steps anal-

ogous in nature to the first two steps of the capture phase: it (1)
identifies all the interactions between observed and external code,
and (2) suitably instruments the application code. Then, the tech-
nique inputs an event log generated during capture and, for each
event, either performs some action on the observed code or con-
sumes some action coming from the observed code. In the rest of
this section, we discuss how the replay phase handles the different
logged events to correctly replay executions of the observed code.

2.4.1 Object Creation
In Section 2.3, we discussed how our technique associates object

IDs to objects during capture. We now describe how object IDs are
used in the replay phase, while generating and consuming events.
Although we use a global ID and a reference map, analogous to the
capture phase, the handling of IDs is different in this case. Unlike
the capture phase, which associates IDs to objects flowing across
the boundaries of the observed code, the replay phase extracts ob-
ject IDs from the events’ attributes and retrieves or creates the cor-
responding objects. Another difference between the two phases is
that, during replay, all object IDs are stored in a reference map (not
only the ones for instances of unmodifiable classes).

Instances of External Classes.Every time the technique pro-
cesses an event whose attributes contain an object ID, it looks for
a corresponding entry in the reference map. (The only exception is
the case of object IDs with values zero or−1, which correspond to
null values and static accesses, respectively.) If it finds an entry,
it retrieves the object associated with that entry and uses it to re-
produce the event. Otherwise, the technique increments the global
counter, creates a placeholder object of the appropriate type (ob-
ject IDs are always paired with a type in the events), and creates
a new entry in the map for that instance with the current value of
the global ID. Aplaceholder objectis an object whose type and
identity are meaningful, but whose state (i.e., the actual value of its
fields) is irrelevant. We need to preserve objects’ identity and type
during replay for the execution to be type safe and to support some

forms of reflection (e.g.,instanceof). Our technique usesplace-
holder constructorsto build placeholder objects. For modifiable
classes, the placeholder constructor is a new constructor added by
our technique. The constructor takes a parameter of a special type,
to make sure that its signature does not clash with any existing con-
structor, and contains only one statement—a call to its superclass’s
placeholder constructor.

For unmodifiable classes, our technique searches for a suitable
constructor among the existing constructors for the class. In our
current implementation, we simply hard-coded the constructor to
be used in these special cases, but other approaches could be used.

Instances of Observed Classes.The case of observed classes
is simpler. When replaying the incall to a constructor, the technique
retrieves the object ID associated with the INCALL event, creates
the object by calling the constructor (see Section 2.4.2), and adds
an entry to the reference map for that instance and object ID. Note
that, because of the way in which we replay events, instances will
always be created in the same order. Therefore, we can use object
IDs to correctly identify corresponding instances in the capture and
replay phases, and to correctly reproduce events during replay.

2.4.2 Events Replaying
During replay, our technique acts as both a driver and a stub. It

provides the scaffolding that mimics the behavior of the external
code for executing the observed code in isolation. The replay scaf-
folding processes the events in the event log and passes the control
to the observed code for INCALL, OUTCALLRET, and EXCIN
events. When control returns to the scaffolding (e.g., because an
incall returns or an exception is thrown), the scaffolding checks
whether the event received from the code matches the next event in
the log. If so, it reads the following event and continues the replay.
Otherwise, it reports the problem and waits for a decision from the
user, who can either stop the execution or skip the unmatched event
and continue. The case of events that do not match (out-of-sync
events) can occur only when replaying events on a different version
of the observed code than the one used during capture.

Note that, whereas recording INCALL, INWRITE, OUTCALL-
RET, and EXCIN events is necessary to replay executions, the need
for recording the events generated in the observed code depends on
the specific use of our technique. For example, if we use the tech-
nique to generate unit or subsystem test cases for regression testing,
events originated in the observed code are useful because they can
be used as oracles. For another example, if we use the technique to
compute def-use coverage off-line, we can disregard those events.
We now describe the handling of the different events during replay.

INCALL Events.To replay INCALL events, our technique first
extracts from the event its three attributes: (1) receiver, which con-
sists of type and object ID, (2) method called, and (3) parameters.

Second, it retrieves from the reference map the instance corre-
sponding to the receiver’s object ID. In this case, the object is nec-
essarily already in the map, unless the method called is a construc-
tor or the invoked method is static. If the INCALL does correspond
to a constructor, the technique calls the constructor to create the ob-
ject and associates it with the object ID in the event. If the call is
static, no object is retrieved.

Third, the technique scans the list of parameters. For each scalar
parameter, it retrieves the value from the event. Conversely, for
each non-scalar parameter, it retrieves the corresponding object us-
ing the object ID. The retrieved object can benull, an actual ob-
ject, if its class is part of the observed set, or a (possibly newly-
created) placeholder object otherwise.

Finally, the technique calls the specified method on the object (or
on the class, in the case of static calls) using the retrieved param-

eters. After the call, the control flows to the observed code. Note
that passing a placeholder object (i.e., an object with an undefined
state) does not compromise the replay because all interactions of
the observed code with external objects are suitably identified and
intercepted by our technique.

INCALLRET Events.INCALLRET events occur as a conse-
quence of an INCALL event and are consumed by the replay scaf-
folding. When the observed code returns after an INCALL, the
scaffolding stores the return value, if any, and retrieves the next
event from the event log. If the event is of type INCALLRET, the
associated value is retrieved in the usual way (i.e., as a scalar value
or as an object ID) and compared to the value actually returned. If
the values match, the replay continues with the next event. Other-
wise, an error is reported and user intervention is required.

OUTCALL Events.OUTCALL events are also consumed by
the replay scaffolding. The technique instruments all observed classes
so that each call to external classes is divided into two parts: the in-
vocation of a specific method of the scaffolding (consumeCall),
whose parameters contain information about the call, and an as-
signment that stores the value returned byconsumeCall, if any,
in the right variable in the observed code. For example, for the
code in Figure 1, statement “Iterator it = ht.iterator();”
would be replaced by the code (assuming that classesHugeTree
andIterator are defined in packagefoo):2

Object tmp = scaffolding.consumeCall(‘‘foo/HugeTree’’,

< object ID for ht >,

‘‘iterator:()Lfoo/Iterator’’,

< empty array of paramters >);

Iterator it = (Iterator)tmp;

MethodconsumeCall retrieves the next event from the event log
and checks whether the event is of type OUTCALL and the param-
eters match the attributes of the event. If this is not the case, an
error is reported to the user.

OUTCALLRET Events.To replay OUTCALLRET events, our
technique extracts from the event the returned value, by retrieving
it in the usual way based on its type (scalar or object), and simply
returns that value.

OUTREAD and OUTWRITE Events.To handle OUTREAD
and OUTWRITE events, the replay phase instruments all observed
classes so that each access to fields of external classes is replaced
by a call to a specific method of the scaffolding:consumeRead for
OUTREAD events, andconsumeWrite for OUTWRITE events.
For example, for the code in Figure 1, statement “double res =
n.val;” would be replaced by the following code (assuming that
classNode is defined in packagebar):

double res = scaffolding.consumeRead(‘‘bar/Node’’,

< objectIDforn >,

‘‘val’’);

MethodconsumeRead retrieves the next event from the event log
and checks whether the event is of the right type and the parameters
match the attributes of the event. If so, it retrieves the value asso-
ciated with the event and returns it. Otherwise, it reports an error
to the user. MethodconsumeWrite behaves in an analogous way,
but does not return any value because, in the case of OUTWRITE
events, no variable in the observed code is modified.

INWRITE Events.To replay an INWRITE event, our technique
first retrieves from the event attributes (1) the receiver object (if

2Our technique actually operates at the bytecode level, and this
example is just for illustration purposes.

the accessed field is non-static), which represents the object whose
field is being modified, (2) the name of the field being modified,
and (3) the value to be assigned to the field. As usual, the value can
be an actual scalar value, an actual object, a placeholder object, or
null. Analogous to INCALL events, if the field is non static, the
receiver object is necessarily already existent when the INWRITE
event occurs. After collecting the information, the technique sim-
ply sets the value of the field in the identified object (or in the class,
in the case of static fields) to the appropriate value.

EXCIN Events.Our technique replays EXCIN events by ex-
tracting from the event the object ID for the exception, retrieving
the corresponding object, and throwing it.

EXCOUT Events.The replay scaffolding consumes EXCOUT
events by providing an exception handler that catches any excep-
tions that may propagate from the observed code. The handler re-
trieves the next event from the event log and checks whether the
event is of type EXCOUT and the exception thrown matches the
exception that was recorded. If not, an error is reported to the user.

2.5 Additional Considerations
For space reasons, we glossed over several technical details. In

this section, we concisely discuss the most relevant ones.
Assumptions: Our technique works under some assumptions. We
assume that there is no direct access from an unmodifiable class
to a field of an observed class. Unmodifiable classes are typically
in system libraries, so we expect this assumption to hold in most
cases—libraries do not typically know the structure of the classes in
the application. We also assume that the interleaving due to multi-
threading does not affect the behavior of the observed code because
our technique does not order “internal events” (e.g., calls between
observed methods), which occur naturally during replay. Finally,
we assume that runtime exceptions occur deterministically.
Special handling of specific language features:Our technique
can handle most uses of reflection. However, in some cases (e.g.,
when reflection is used in external code to modify fields of ob-
served classes), additional instrumentation is required. Analogously,
to correctly handle all accesses to arrays, some additional instru-
mentation is required. Finally, inheritance and access modifiers re-
quire some special handling. In particular, in some cases, the tech-
nique must change access modifiers of class members to be able to
replay recorded executions (which can be done without affecting
the semantics of the observed code).

3. EMPIRICAL EVALUATION
To evaluate our technique, we built SCARPE (Selective Capture

And Replay of Program Executions), a prototype tool that imple-
ments our technique, and used it on a software subject. During cap-
ture, SCARPE runs the application being captured using a custom
class loader. Such class loader inputs the list of observed classes
and instruments (modifiable) classes on the fly, at class-loading
time, using the Byte Code Engineering Library (BCEL).3 In this
way, we simplify the capture phase because there is no need to save
instrumented versions of the application and related libraries and to
use special class paths during execution. This aspect is especially
important if the technique is to be used on users’ machines.

During replay, SCARPE acts as the replay scaffolding. It mim-
ics the behavior of the part of the system that is not being re-
played (i.e., the external code) and suitably reproduces and con-
sumes events. Also in this case, the necessary instrumentation is
performed on the fly, by means of another custom class loader.

3http://jakarta.apache.org/bcel/

Using SCARPE, we performed a feasibility study. The goal of
the study was to assess whether the technique can be used on some-
thing more than a toy application and to evaluate its practicality. As
a subject, we used NANOXML, an XML parser that consists of 19
classes and about 3,300 lines of code. To execute NANOXML, we
used a test suite, developed by other researchers, that contains 216
test cases. For each classc in the application, we defined an ob-
served set consisting ofc only and ran all test cases in the test suite
using SCARPE. In this way, we recorded 216 event logs (one for
each test case in the test suite) for each of the 19 classes in the ap-
plication, for a total of more than 4,000 logs. We then replayed, for
each class, all the recorded executions for that class.

The feasibility study was a complete success, in that all execu-
tions were correctly captured and replayed. We checked the cor-
rectness of the replay both by making sure that all of the events
generated by the observed set were matching the logged events and
by spot checking some of the executions. (To this end, we created a
special version of SCARPE that reports all of the events generated
by the observed code and lets the user inspect them.)

Although this is just a feasibility study, and the evaluation of our
technique is still in its early stages, we consider the successful cap-
ture and replay of thousands of executions a very promising result.

4. RELATED WORK
Several techniques have been defined for capture and replay of

entire applications. The technique that is most related to ours is
JRAPTURE, by Steven and colleagues [9], a technique and a tool
for capture and replay of executions of Java programs. The tech-
nique replaces the standard Java API with a customized API that
records all inputs to the running program. During replay, another
customized API feeds the recorded data back to the program. This
technique incurs in many of the problems that we mention in the
Introduction because it captures complete input/output information
for each execution. Moreover,JRAPTURE requires two customized
versions of the Java API for each Java version targeted.

Other related techniques aim to reproduce the concurrent behav-
ior of applications (e.g., [1, 2, 3, 7, 10]). In particular, Choi and
colleagues present DejaVu, a platform for analyzing multi-threaded
Java program executions [1, 2]. DejaVu supports debugging activi-
ties by performing a fully-deterministic replay of non-deterministic
executions. DejaVu and our technique have different goals and,
thus, a different set of constraints and tradeoffs. DejaVu focuses
on reproducing, giving the same inputs, the same application be-
havior in terms of concurrency-related events, has no need to store
input and output values, and does not have efficiency constraints.
Our technique is mostly concerned with automatically capturing
and replaying subsystems and has efficiency as a priority because
we want the technique to be usable also on deployed software.

Recently, Saff and Ernst presented a technique for automated test
factoring that aims at improving the efficiency of testing by auto-
matically building mock objects for testing units in isolation [8].
Although interesting, their approach is still preliminary. Our tech-
nique seems to provide better support for Java’s object-oriented
features and characteristics (e.g., it is not clear how their approach
would handle exceptions and unmodifiable classes). Also, our ap-
proach is more general and can be used for different applications.
In fact, our replay scaffolding could be used as a set of mock ob-
jects for the subsystem or unit of interest.

5. CONCLUSION AND FUTURE WORK
We presented a novel technique for selective capture and replay

of program executions, a tool that implements the technique, and a
study performed on a real application that shows the feasibility of
the approach. There are many possible directions for future work.

In the immediate, we will continue our evaluation of the ap-
proach to assess the performance of our technique on various sub-
jects and executions. In particular, we must evaluate our technique
in the case of multi-threaded programs. To this end, we have started
collecting subjects and improving our tool. Through experimenta-
tion, we will assess the efficiency of our technique and its limits.
The results will drive refinements or extensions of our approach.

Other research directions consist of investigating the use of the
technique for various applications. We discuss a few possibilities.

A first possible application ispost-mortem dynamic analysis of
users’ executions. Our technique could be used to selectively cap-
ture users executions and to perform dynamic analysis (e.g., cover-
age or performance analysis) of the observed code while replaying
these executions. We envision the investigation of this application
in several scenarios. One scenario involves the collection of the
users’ executions to replay them in-house. Another possibility is to
replay and analyze the executions on the users’ machines, leverag-
ing free cycles, and collect the results of the analysis only. (Note
that this second scenario would eliminate most privacy issues: the
only data collected from the users would be analysis results, such
as performance data, possibly further sanitized.) Yet another pos-
sibility is to use some criterion for deciding which executions to
delete and which ones to gather. For example, only executions that
terminate with an exception could be sent back for analysis.

Another possible application isregression testing. Subsystem
and unit test cases could be generated from complete executions of
the application (e.g., as JUnit test cases) and used to test new ver-
sions of such subsystems and units. The major issue with this ap-
plication is that our technique collects minimal information during
capture. The technique may not be able to replay the captured ex-
ecution when the interactions between observed and external code
change in the new versions. For example, consider a new version of
classCompute (see Figure 1) in which methodgetRatio accesses
field size of objectht. In such a case, we would not be able to
replay the execution ofCompute because our log would contain no
information about an access that was not occurring in the original
version of the class. For this application of the technique, it is first
necessary to study sets of changes between versions of various pro-
grams to assess how often the replay on a different version of the
observed set would fail. One way to do this is to capture execu-
tions for a given version of a class or subsystem, replay them on a
set of subsequent versions of such class or subsystem, and measure
how often the replay results inout-of-syncevents. In some cases,
it may be possible to simply ignore such out-of-sync events (e.g.,
when the event does not affect the main flow of the computation).
In other cases, those events may be handled by providing some de-
fault value to the observed code (e.g., for OUTCALLRET events
that corresponds to unmatched OUTCALL events). We will also
investigate ways to extend the amount of information captured and
to balance the resulting trade-offs between efficiency and effective-
ness. For example, we are already considering the possibility of
capturing complete objects of some classes, such asString.

A third application isdebugging. Consider again the example in
Figure 1. The example contains a fault. If (1) the integer passed
to setup has the same value as the integer returned by the call to
db.getSomeInt within setup, (2) the value of fieldnorm is not
redefined, (3) methodgetRatio is called, and (4) predicate “res
> 0” evaluates to true at least once, then the application generates
a division by zero and fails. An execution that terminates with such
failure could be arbitrarily long and involve a number of interac-
tions between users, application, and database/filesystem. In this
context, we could selectively capture the execution of a subsystem
of interest (e.g., the one in which the failure occurs) and then debug

its replayed execution. In this context, we are currently working on
combining our approach with Zeller’s delta debugging [11], to find
a minimal set of interactions that lead to the failure.

Another potential direction for future work is the use of static
analysis and, possibly, profiling information to help users decide
which classes should be included in the observed set. Currently,
the technique requires the users to define the observed set and does
not provide any support for this task. Static analysis and profil-
ing could help identify classes that are tightly coupled and that,
if separated, may generate an impractical number of interactions.
(Although our technique collects minimal information, there may
still be cases in which the execution log becomes too large to be
practical.) Appropriate analyses could suggest the users ways to
improve the performance of the technique by either including more
classes in the observed set (e.g., classes that are tightly coupled
with classes already in the set) or by excluding some classes (e.g.,
classes tightly related with external code and not cohesive with the
observed set). Static analyses such as flow analysis could also be
used to identify classes that should be excluded from the observed
set because they handle confidential data.

Finally, from a more practical standpoint, a possible research di-
rection is to modify the technique to work at the Java Virtual Ma-
chine, rather than at the bytecode, level. While this approach sacri-
fices portability, it has the potential to improve the performance of
the capture phase, as well as to allow for a more accurate replay of
threaded programs [2].

Acknowledgments
This work was supported in part by NSF awards CCR-0205422,
CCR-0306372, and CCR-0209322 to Georgia Tech. Shrinivas Joshi
helped implementing the tool. The attendants of the Dagstuhl Sem-
inar on “Understanding Program Dynamics” gave useful comments
on an early version of this work [6]. Gregg Rothermel provided the
software subject and the test cases for our empirical evaluation.

6. REFERENCES
[1] B. Alpern, T. Ngo, J.-D. Choi, and M. Sridharan. Dejavu:

Deterministic java replay debugger for Jalapeño Java Virtual
Machine. InProceedings of OOPSLA 2000 – Addendum, pages
165–166, 2000.

[2] J.-D. Choi and H. Srinivasan. Deterministic replay of java
multithreaded applications. InProceedings of the Symposium on
Parallel and Distributed Tools, pages 48–59, 1998.

[3] R. Konuru, H. Srinivasan, and J.-D. Choi. Deterministic replay of
distributed java applications. InProceedings of the Intl. Parallel &
Distributed Processing Symposium, pages 219–228, 2000.

[4] T. Lindholm and F. Yellin.The Java Virtual Machine Specification
(2nd Edition). Addison-Wesley Pub Co, 1999.

[5] A. Orso, T. Apiwattanapong, and M. J. Harrold. Leveraging field
data for impact analysis and regression testing. InProceedings of
ESEC/FSE 2003, pages 128–137, september 2003.

[6] A. Orso and B. Kennedy. Improving dynamic analysis through
partial replay of users’ executions. In J. Choi, B. Ryder, and
A. Zeller, editors,Online Proceedings of the Dagstuhl Seminar on
Understanding Program Dynamics, December 2003.
http://www.dagstuhl.de/03491/Proceedings.

[7] M. Russinovich and B. Cogswell. Replay for concurrent
non-deterministic shared-memory applications. InProceedings of
PLDI 1996, pages 258–266, 1996.

[8] D. Saff and M. D. Ernst. Automatic mock object creation for test
factoring. InProceedings of PASTE 2004, pages 49–51, June 2004.

[9] J. Steven, P. Chandra, B. Fleck, and A. Podgurski. jRapture: A
capture/replay tool for observation-based testing. InProceedings of
ISSTA 2000, pages 158–167, 2000.

[10] K. C. Tai, R. H. Carver, and E. E. Obaid. Debugging concurrent Ada
programs by deterministic execution.IEEE TSE, 17(1):45–63, 1991.

[11] A. Zeller and R. Hildebrandt. Simplifying and isolating
failure-inducing input.IEEE TSE, 28(2):183–200, 2002.

